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ABSTRACT

Contact fatigue failure is a common problem experienced in many applications 

such as bearings, gears and railway tracks. In recent years, research companies have 

developed finishing processes which aim to improve a component's contact fatigue life. 

One such process has been patented by REM Chemicals in Texas. Preliminary contact 

fatigue tests have shown that this superfinishing process could potentially improve a 

component’s contact fatigue life by 300%. Before this technology can move from the 

laboratory to an industrial platform, more tests are needed to verify the claim. To the best 

of the author’s knowledge, no standard process or test machine exists to assess the fatigue 

endurance of superfinished contacting surfaces.

The objective of this thesis is to discuss the completion and verification of a 

sliding-rolling contact fatigue (S-RCF) test rig. A majority of the development and 

fabrication was performed by a group of students at the University of North Dakota before 

May 2007. After this, completion of the tester was finished by the graduate student of this 

thesis. Unlike other contact fatigue testers built for specific purposes, the proposed tester 

allows for more flexible testing parameters such as any combination of slide-roll ratio 

between the surfaces, any operating speed and dry or lubricated testing. For failure 

detection, the proposed tester is equipped with a state-of-the-art eddy current crack 

detection system. However, it can be easily modified to use ultrasonic or vibration based 

crack detection devices. The eddy current crack detection system can also be used to

Xlll
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monitor and investigate crack growth for different materials, levels of superfinish and 

operating conditions.

Three preliminary tests on a common gear material (A1S1 8620 steel) were 

performed mechanical limits as well as the software performance of the tester. Two of 

the 8620 specimens exhibited signs of failure during testing, while one specimen was 

suspended after running for several days. While the last specimen was being tested, a 

shaft broke and further testing could not be performed. The tester failure was caused due

to poor manufacturing of the shafts and a slight misalignment of the rollers.

During the three tests, the various systems of the S-RCF tester were left running 

for several days and only minor problems were found. These problems were either 

inconsequential or fixed. Several Matlab® scripts were developed and modified to

-5 v::-.

S i ? ; . ...... XIV
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CHAPTER 1

INTRODUCTION

The University of North Dakota’s Engineered Surfaces Center (ESC) funded the 

development of a sliding-rolling contact fatigue (S-RCF) test machine to simulate gear 

contact. The machine’s purpose is to test gear materials with various surface finishing 

processes under sliding and rolling contact fatigue conditions in a controlled and timely 

manner. The ESC will use the tester to determine the performance of a new 

superfinishing process for gears.

Development of the tester began in the summer of 2006, with Dr. Marcellin Zahui 

and two undergraduate students. In September of 2006, the tester was a project for the 

senior design class at the University of North Dakota and three more undergraduates 

were added to the team. The team’s name was Penta-X. The overall design and 

drawings for the S-RCF tester were completed in December of 2006 and the majority of 

the assembly was completed by May of 2007. After graduation, one team member 

remained to complete the construction of the tester and perform the first preliminary 

contact fatigue tests.

This paper presents a short background of contact fatigue testing and documents 

the results of the preliminary fatigue tests performed with the S-RCF tester. These test 

results are used to assess the overall design quality and fatigue testing capability of the S-

RCF tester.
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Background

In any mechanical system, failure happens eventually. Depending on the 

mechanics of the failure mode, failure can occur suddenly or gradually over a short or 

long period of time. If unexpected, the results could be significant financial losses, 

damage to the machine and/or severe injuries. In any design, planning for and predicting 

failure can help save time, money and lives.

For metals, many failure modes exist. A description of these failure modes can be 

seen in Table 1. Since most devices are designed to work in the elastic region, the most 

studied failure mode is excessive deformation or yielding [1]. However, the most 

common type of failure is fatigue, which has been reported to account for 50 to 90 

percent of all mechanical failures; most of these unexpected [1].

Table 1 Mechanical Failure Modes of Metals [1J

Failure Mode Description
E x c e s s iv e  D e fo rm a ton E la s tic ,, y ie ld ing , o r  th e  o n s e t o f  p la s t ic ity
D uctile '; F ra c tu re S u b s ta n tia l p la s t ic ity  and h igh -ene rgy  a b so rp tio n
B ritt le ' F ra c tu re L ittle  p la s t ic ity  and  low -ene rgy  a b so rp tio n
Im p a c t o r D y n a m ic  Load ing E x c e s s iv e  d e fo rm a tio n  o r frac tu re
C re e p E x c e s s iv e  d e fo rm a tio n  o r fra c tu re
R e la xa tio n L o ss  o f re s id u a l s tre s s ; o r-e x te rn a l load ing
T he rm a l S h o c k C ra c k in g  a n d /o r fra c tu re
W e a r M an y  p o s s ib le  fa ilu re  m e c h a n is m s
B uck ling ., E la s t ic  p r p la s tic
C o rros ion
S tre s s  C o rro s io n  C ra c k in g E n v iro n m e n ta l a s s is te d  c ra c k in g
A e s th e t ic  F a ilu re
F a t ig u e ' R epea ted : load ing

l'he focus of this thesis is fatigue failure as defined by A STM as follows [2]:

The process of progressi ve local ized permanent structural 
change occurring in a material subjected to conditions that 
produce fluctuating stresses and strains at some point or 
points and that may culminate in cracks or complete 
fracture after a sufficient number of fluctuations.

2
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From this definition, several key aspects of fatigue are defined. The word 

"progressive” states that fatigue damage occurs over a period of time. “Localized” 

implies that the damage occurs in a small section rather than the entire part. Since fatigue 

is irreversible, it is described as “permanent”. Finally, the word “fluctuating” describes 

the dynamic type of loading that is experienced during fatigue failure.

Even with the above definition, many different types of fatigue failure exist.

These various fatigue failures can be described by the loading type applied. Examples of 

different loadings include bending, uniaxial, multi-axial, torsion, rolling and/or sliding 

contact or a combination of each. Since fatigue failure occurs over time, the load history 

can also affect the fatigue life of a part.

In this thesis, rolling contact fatigue is defined as follows: [3]:

...the mechanism of crack propagation caused by the near
surface alternating stress field within the rolling-contact 
bodies, which eventually leads to material removal.

Although this definition is for rolling situations, it applies to sliding conditions as 

well. Two key points are made in the definition. First, the stress that causes failure is 

“near-surface alternating stress”. Secondly, the failure results in “material removal”, 

meaning pieces of material can cause further damage if not removed.

Contact fatigue issues can be traced back to the railway industry in the 1840s [ 1 ]. 

Other than the railways, gears and bearings are other components commonly studied for 

contact fatigue strength. These three parts affect many major industries, including 

automotive, manufacturing and aerospace. Therefore, improving the RCF life of these 

components can create a safer, longer-lasting device.

3
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Known Factors Affecting Contact Fatigue Life

Contact fatigue is the gradual wear that results from two surfaces directly 

contacting each other. For gears, contact fatigue is experienced when teeth mesh. In 

bearings and railways, contact fatigue occurs when the balls or wheels move inside or 

along a surface.

A material’s contact fatigue strength is affected by numerous factors. For a given 

material, these factors can be separated into two classifications. The first class describes 

the various operational and environmental conditions the material is expected to 

experience. The second class of factors describes the process-induced characteristics of 

the material.

The environmental factors that are part of the first class include the contacting 

force, sliding ratio between the two surfaces, lubrication type, lubrication regime and 

surface temperature.

The most obvious environmental factor affecting a material’s contact fatigue life 

is the contact force. The magnitude of the force determines the intensity of the stress 

field at the point of contact. The higher applied force, the higher the Hertzian 

compressive and shear stresses. Hertzian stress is the stress that results from two curved 

surfaces in contact. The general parabolic shape for a Hertzian stress field can be seen in 

Figure 1.

4
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Max Hertzian 
PressureMean H 

Pressui

Figure 1 General Hertzian Stress Distribution for Contacting Cylinders

The effect of the contact force has been studied extensively in uniaxial and 

bending fatigue tests. For uniaxial and bending testing, stress fatigue life (S-N) curves 

are dc\ 'oped to show the trend of a material's fatigue life for different stress values. 

Similar curves can be generated for materials in sliding/rolling contact fatigue conditions 

[4], The biggest difference between the testing types is uniaxial and bending produce 

tensile stresses; whereas, contact fatigue creates multi-axial compressive stresses [4], 

Since cracks do not grow in compressive stresses, tensile stresses are present in the 

material [4],

Another important environmental factor is the slide ratio (also know as slip ratio) 

between the two surfaces. The slide ratio (SR) is simply the ratio of the velocities ofthe 

two surfaces. This is an important factor when simulating gear teeth meshing. As-gear 

teeth mesh, sliding’,occurs between the teeth. Equation 1 is used to define the slide ratio
,*• • ,T •- > *■ . *• • >v • -  .: *• tV- \  . •/ .. i ; •
•between the surfaces, The variables vr and vs are the surface velocities of the roller and

specimen, respectively. Rolling occurs when the two surface velocities are equal or when

the SR value is zero. For the.S-RCF tester, positive SR values will be used since the
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SR
Eq.

Since different applications require different lubricants, the type of lubricant is an 

environmental factor. These lubricants vary in properties as well as form (grease or oil). 

The S-RCF tester allows for dry or lubricated testing. Therefore, lubricants can be tested 

against a dry baseline sample to determine which performs the best.

Another environmental factor affected by the lubrication is the amount of 

lubrication supplied to the part. The amount of lubrication present can be classified into 

one of three lubrication regimes. The lubrication regime describes the elasto- 

hydrodynamic lubrication (EHL) present during testing. EHL is used to describe the 

lubrication for rolling or sliding conditions under extreme pressures which cause the 

surfaces to deform. Regime 1 is essentially metal on metal contact. Regime 2 is partial 

metal-to-metal contact with a thin oil film. Regime 3 has an oil film thick enough to 

prevent metal-on-metal contact [5], The lubrication regime can be determined by using 

Equation 2, where hmjn is the minimum film thickness and Rq is the surface roughness 

RMS (root mean square) values of the individual contacting surfaces [6], Table 2 

provides the range of values for each regime.

h„,.„______

R . 2
Eq. 2 [6]

A =
V2

Table 2 Lubrication Regime Values and Description [5]

Regime A Description
1 < .3 N o A p p re c ia b le  O il F ilm
2 .3 -3 .0 M ixe d  Lub rica tion  (Thin F ilm )
3 > 3 .0 C o m p le te  S e pa ra tio n  and  Full E H L  C o n ta c t

6
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The final environmental factor is the surface temperature. The surface 

temperature is a hard variable to control since it is influenced by the contacting force, 

geometry of the contact area, slide ratio, surface roughness and the lubrication conditions 

[7], Deng et al. examined the effect of surface temperature on surface strength and 

recommended that it be included in surface strength evaluation for high temperature 

environments.

The second class of factors affecting the contact fatigue strength of a material is 

the process-induced factors. These factors include the surface roughness, mierostrueture 

purity, heat treatment and the residual stresses in the material.

The most studied processing factor is the surface roughness. The surface 

roughness is the small-scale variations in height on a material’s surface. While a rough 

surface earn prevent surfaces from welding together, it can have several negative effects 

for a material’s contact fatigue life. A high surface roughness causes variations in the 

distribution of the contact pressure, resulting in local ized plastic deformation and crack 

initiation: [4]. If the lubricant becomes trapped, a region of high hydrostatic pressure will 

form [:4], Therefore, many gears, bearings and railways have low surface roughness 

values. These low values are accomplished by finishing processes.

The'microstructure purity and the heat treatment of the material both affect the 

contact fatigue strength of a material. Impurities, such as inclusions and soft spots, can
‘ 'v T  vy «£=.*•.■■ -.TV*-_• -iVV 7 ■ • • • • ■ • .. • .

act as-erack-nucleation sites. As the.microstructure becomes purer, the failure-mode 

moves closer to the surface [4], The type and quality of heat treatment will affect the 

amount of impurities as well as the case depth and hardness of the part. A poor heat 

treatment can result in an insufficient case depth causing a subcase failure.

7
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The final-process induced factor is the residual stresses present in the material. 

Compressive stresses are induced into the surface of a component in several ways such as 

shot-peening or case-hardening. Compressive stresses are considered beneficial to 

improving a materials contact fatigue life [1], Since cracks form in areas of tension, 

compressive regions will hinder crack propagation and growth. However, due to the 

complex changes in the stress field during contact fatigue conditions, areas of tension 

exist in the area of contact H! j.

Even though contact fatigue testing has been performed since the begin of the 

railway system, the effect and importance of each factor has not been assessed [4]. 

Therefore, contact ligue standards have not been set. The S-RCF tester discussed in 

this report is a tester with the ability to systematically test these parameters. A design of 

experiments approach can be used to identify key factors and assess their effect on a 

material's, contact fatigue strength.

Failure Types and Modes of Contact Fatigue

Hue to the lack of knowledge and information about the basic mechanisms of 

contact fatigue failures, different industries use different terminologies to describe the 

same.Tailureanode. In this thesis, the definitions and terminology used 'will-be as. defined 

by ASM International. ASM International states that the various terminologies can be 

categorized into two failure types and two contact fatigue.failure modes [3].

The-fa ilure types for contact fatigue are macropits (large pits) and micropits 

(small pits). The scale used to determine what is large and what is small is the asperity 

height. The asperity height is the roughness height of the part in question. Maeropits:.are

8
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much larger in size than the asperity height; whereas, micropits are much closer to the 

asperity height. Figure 2 shows the size difference between a macropit and a micropit.

Figure 2 Dimensional Difference between a Macropit and a Micropit [8]

The failure modes for contact fatigue are subsurface-origin (SS-O) failure and 

surface-origin (S-O) failure. SS-0 failure modes form macropits and can be separated 

into two classes. The two classes are inclusion originated (10) and subcase fatigue. 10 

macropits develop in random locations where a defect in the bulk material is present, 

such as an inclusion or microstructure alteration [3]. Subcase fatigue macropits originate 

at the interface of the case/core interface where the case hardness is lower than the 

Hertzian shear stress field [3]. A photograph of subcase fatigue failure is shown in 

Figure 3.

9
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Figure 3 Photograph of Subcase Fatigue Failure [9]

Surface-origin (S-O) pits result from asperity (surface roughness changes) and 

tractive (pulling) forces acting on defects or surface discontinuities on the surface or in 

the immediate subsurface [3]. The three classes of S-0 failure modes are point-surface 

origin (PSO), geometric stress concentration (GSC) and micropitting. PSO failure forms 

random macropits like 10 macropits; however, the PSO macropits originate on the 

surface and have no inclusion as an initiation site [3]. GSC macropits result from 

misalignments, deflections under loading and contact geometries which increase the 

Hertzian shear stress field at the surface [3]. Micropitting is the only failure mode which 

creates micropits. Micropitting occurs at low operating speeds when a low viscosity 

lubricant is used and a thin elasto-hydrodynamic lubrication (EHL) layer is present [3]. 

The onset of micropitting is a glazed surface due to plastic deformation that contains 

microscopic cracks. If severe enough, micropitting can lead to macropitting.

The failure modes occur when the Flertzian stress field is greater than the 

material’s strength. Since the significant stress in contact fatigue is the alternating shear 

stress, the shear strength of the materia! is important [3], In a pure rolling condition, the 

plane of maximum shear stress is slightly below the surface [3]. In a sliding condition, 

the frictional forces and temperature change increase the magnitude and distribution of
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the shear stress field [3]. Figure 4 shows how different locations where the Hertzian 

stress field is larger than the material’s strength results in different failure modes.

Figure 4 Hertzian Stress Distribution for Different Contact Fatigue Failure Modes

Contact Fatigue Testers

Several contact fatigue testing devices are available in the world today. Since no 

standard method exists for designing a contact fatigue test machine, each tester is 

developed for a specific application. Therefore, the parameters controlled and 

investigated vary for each machine. A summary of the many different types of RCF 

testing methods and a brief description of their capabilities can be found in reference [3]. 

A few of the available testers are presented here in more detail.

Figure 5 is the picture of the gear test apparatus located at the Glenn Research

Center.
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Figure 5 NASA Glenn Research Center's Gear Test Apparatus (a) Cutaway View (b) 
Schematic View [10]
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The NASA tester uses a gear as the test specimen. Therefore, a gear must be 

manufactured for each test. The test gears are offset to allow four sets of fatigue tests to 

be performed on each set of gears [10]. Since gears are being used, the sliding ratio 

cannot be varied or controlled. Loading is applied gradually and controlled by adjusting 

the hydraulic pressure which applies a breaking torque to one of the shafts of the meshing 

gears [10]. Separate lubrication systems are used to lubricate the test gears and the slave 

gears, allowing dry testing to be performed on the gears. Testing is typically run 

continuously at a speed of 10,000 rpm [10]. Crack detection is accomplished visually 

and/or by using a vibration monitoring system. In one study, the gears were inspected 

after every 50 million cycles and continued to run until the vibration detection transducer 

broadband RMS magnitude increased over a preset threshold [11]. In the same study, 

surface fatigue failure was defined as one or more pits covering 50 percent or more of the 

contact width [11].

Instead of using NASA’s tester, one study used the rolling/sliding contact fatigue 

(R/SCF) tester at Pennsylvania State as a screening test [12]. Since the R/SCF tester uses 

a round cylinder, specimens could be tested at a cheaper cost. The screening experiment 

spun the R/SCF specimen at a speed of 1330 rpm with the load being applied 

hydraulically on the roller [12]. The slide ratio between the roller and the specimen can 

be varied by changing the gears on each of the shafts. No information in the literature 

was found as to how failure was defined or detected. Figure 6 shows the schematic view 

of the R/SCF tester along with a picture of the actual testing specimen and roller.

13
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16 Tooth Goar

a.) Schematic of R/SCF Tester b.) R/SCF Roller and Specimen

Figure 6 Pennsylvania State's Gear Research Institute (GR1) Rolling/Sliding Contact 
Fatigue Tester a.) Schematic b.) Roller and Specimen [12]

In Tampere, Finland, a high pressure twin disc (HPTD) test device was developed 

to simulate gear contact [6], Loading is applied by pushing on one disc while the other is 

held in place. The maximum load that can be applied is 11,000 N (2,473 lbf) [6]. The 

maximum speed is 6,000 rpm and the slip can be controlled since each disc is controlled 

by a separate motor [6]. The lubrication system has two filters on it along with a heater 

and cooler to control the oil temperature [6], The failure detection method and criteria 

were not mentioned because reference [6] dealt with determining the friction coefficients 

at different slip ratios. Figure 7 shows the HPTD loading frame and testing specimens.
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Figure 7 High Pressure Twin Disc (HPTD) Test Device Loading Frame [6]

In Japan, a study was conducted using a backup-roller-type two-roller (BRT2R) 

fatigue test rig on the effect of surface temperature on a material’s fatigue strength [7]. 

The BRT2R tester uses two disks of similar material, one as the roller and the other as a 

specimen. The specimen is slightly smaller in diameter than the roller, thus creating slip 

between the surfaces. Since the specimen is smaller, it has been labeled as the high

speed roller; whereas, the other roller was labeled as the low-speed roller. The shafts are 

turned using a belt and pulley at a speed of 2000 rpm [7]. Figure 8 shows the Japanese 

tester, with the specimen and roller both labeled at test rollers. The backup-loading-roller 

loads the tester, but it is unclear as to how this load is applied.
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(a) Schematic View (I)) Backuproller-type two-roller fatigue test rig

Figure 8 Backup-Roller-Type Two-Roller (BRT2R) Fatigue Test Rig (a) Schematic View 
(b) BRT2R Test Rig [7]

The last tester is the entitled the ZF-RCF tester. The first ZF-RCF tester was 

developed in Germany and a second has been created at V-Tech International in West 

Bend, Wisconsin. The ZF-RCF tester uses three rollers to contact one specimen. Each 

revolution of the specimen results in three load cycles, thereby decreasing testing time. 

The ZF-RCF can turn the specimen at a maximum speed of 3600 rpm [5]. Loading is 

applied by pressurizing the oil, meaning the specimen is submerged in oil and the 

compartment must be sealed tight [5], The oil pressure is controlled by a servo-hydraulic 

valve, allowing variable loading to be applied during a test [5]. Since gears are used to 

turn the roller shafts, different gearing will create different slip ratios between the rollers 

and specimen. The detection method used for the ZF-RCF is a non-destructive eddy 

curt-gut method Failure is defined as an increase in the output voltage from the eddy 

current device [5]. When calibrated correctly, a certain voltage increase will correspond
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to a crack length or size. In this way, crack growth can be monitored with the eddy 

current system. The ZF-RCF also incorporates a vibration sensor to allow for testing to 

catastrophic failure [4], The specimen is a cylinder with tapered ends. A photograph of 

the ZF-RCF can be seen in Figure 9.

Figure 9 ZF-RCF Tester [13]

Several other contact fatigue tester and test methods are available that have not 

been mentioned in this paper. The machines discussed were primarily designed for the 

purpose of simulating gear contact. Other testing devices exist to simulate bearing and 

railway conditions. Some testers are designed to simulate contact fatigue in the most 

general conditions.
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CHAPTER 2

S-RCF DESIGN

The S-RCF tester was designed, analyzed and assembled primarily during August 

2006 to May 2007 by the University of North Dakota’s senior design group Penta-X. 

Alter this, one student remained to improve the tester and perform the first tests with the 

machine.

In Chapter 1, several known factors affecting a material’s contact fatigue strength 

were discussed. The quality of a contact fatigue tester depends upon its ability to 

accurately control and monitor the operational conditions. These factors include the 

contacting force, the slide ratio, the lubrication type, lubrication regime and the surface 

temperature. A deslg unit controls and monitors each factor efficiently will be a more 

■ ; tester.

The S-RCF tester can be divided into three major components. These 

components are the main structure, lubrication system and failure detection system. The

main structure can .be divided into smaller subsections consisting of the base .structure,
■. O ’ ' ' '  ' V  ' T  ' 1 V ,

: ■■0. . . -v ' V : • 4 • V.y*
internal .structure.; speed.mechanism and the- loading mechanism. These components and 

systems were designed to allow the testing of as many factors as possible. Figure 10 

shows a picture of the S-RCF tester.
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Figure 10 S-RCF Tester

Design Requirements

Two major design requirements were used to design the S-RCF tester. The first 

requirement stated that testing be completed in a reasonable amount of time. The second 

requirement was that loading capability be similar or comparable to other testers.

The First requirement of test time depends upon the rotational speed of the 

specimen and the number of contact points. The faster the specimen is turned, the less 

time is needed to complete a given number of cycles. The more contact points on the 

surface will results in more loads per revolution. Since there are many factors affecting a 

material’s contact fatigue strength, testing time can vary significantly. The longest 

testing time is expected to occur in a well-lubricated condition. In a study using the ZF- 

RCF tester, several materials were tested in rolling contact fatigue under full EHL 

conditions [13]. The results of the study are presented in Table 3. The largest value is 

20.7 million load cycles.
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Table 3 ZF-RCF Results for Various Materials [13]

M citeriai
L o a d  C y c le s  to 

F irst C ra c k  
(1 0 A6)

L o a d  C y c le s  to 
F in a l F a ilu re  

(10 A6)
A ISI 5120 12.1 14.0
A I S l 8620 15.5 20.7
A I S I 1060 4.3 6 .2

A I S I 4150 6.7 7.5

Due to the large number of cycles needed, Penta-X designed the S-RCF to have 

three contact points on the specimen. In this way, three load cycles can be completed for 

every one revolution of the specimen. Figure 11 shows the relation between specimen 

rotation speed, load cycles completed and the required testing time for the S-RCF tester. 

Penta-X decided that the S-RCF tester should be able to complete 30 million load cycles 

in under forty-eight hours. In Figure 11, the design requirement line shows that the 

specimen motor speed should be approximately 3500 rpm.

----- 5 Million Load Cycles - * - 1 0  Million Load Cycles
—*—20 Million Load Cycles -H — 30 Million Load Cycles

Specimen Motor Speed (RPM)

Figure ! I Testing Time Required for a Number of Load Cycles Using a Three Contact 
Point Testing Machine
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The second requirement concerning the loading capability depends on the loading 

applied and the speed of the specimen. The loading values reported by other testers were 

given in Hertzian pressure values. Hertzian stress is the localized stress which develops 

from two curved surfaces contacting each other. The maximum value for the Hertzian 

contact stress found for the ZF-RCF was 2100 MPa (305 ksi) [13]. This Hertzian contact 

stress can be converted into a radial and tangential force. The tangential force is the force 

needed by the motors to turn the specimen. The radial force is the force applied by the 

loading mechanism.

During the preliminary design phase, it was decided that the S-RCF tester would 

apply loading directly. Thus, the radial force (Fr) is a user defined variable and can be 

converted into a maximum Hertzian stress (PHz) using Equation 3. The variable L is the 

contact length of the contacting surfaces (5 mm for the S-RCF tester).

PHz =
4 F .

L n - B  Eq. 3 [9]

The only unknown variable in equation 3 is the contact width (B). Since the 

contact width is the amount of deformation that occurs, it is dependent upon the 

individual size and stiffness of the two contacting surfaces. The effective radius (R) 

accounts for the size difference and can be calculated using Equation ^, where rl and r2 

are the radii of the two surfaces.

r - H l

>\ + c Eq.4 [9]

The stiffness correction requires the Young’s modulii (El, E2) and Poisson’s 

ratios (vl, v2) of the two respective surfaces. Equation 5 shows how to calculate the
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stiffness correction (K,) for a surface. With the correction factors now calculated, the 

contact width (B) can be calculated using Equation 6.

K ,  =■
n  • E Eq. 5 [9]

B  = l \ 6 - F r - ( K ,  + K 2 ) - R

v L Eq. 6 [9]

Figure 12 is a drawing of two cylinders contacting and the resulting Hertzian 

stress distribution. Some variables used in calculating the Hertzian stress are labeled.

Figure 12 Flertzian Stress Variables and Distribution for Contacting Cylinders

Using the information provided about the ZF-RCF tester, it was determined that 

testing A1SI 8620 material would require a radial force of approximately 9.055 N (2,036 

ibf) to achieve a stress of 2.1 GPa [13].

The tangential force can be determined if the coefficient of friction is known.

This value depends upon the slide ratio and lubrication regime. A slide ratio of zero 

would be the two surfaces rolling on each other; whereas, any other value would be a 

sliding situation. The lubrication regime can be dry, a thin film, or a full EHL layer. 

Table 4 provides estimates of the coefficient of friction values for steel on steel contact in 

various conditions.
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Table 4 Coefficient of Friction Values for Steel-on-Steel Contact under Different 
Lubrication and Sliding Conditions [14]

S lid in g  C o n d it io n L u b r ic a t io n C o e f f ic ie n t  o f  F r ic t io n
Rolling Dry - 0 . 0 0 0 5  m
Slidin g Dry 0 . 2 0 - 0 . 7 8
Slidin g Thin Film 0 . 0 2 - 0 . 1 4

S liding Full E H L  La y e r 0 .0 0 0 2  - 0 . 0 0 7

The coefficient of friction of two steel disks rolling is represented by the variable 

f. For sliding conditions, the coefficient of friction will be the variable gk- Equation 7 

shows how to calculate the tangential force for rolling conditions. Equation 8 calculates 

the force for sliding conditions. The variable r is the radius of the surface in question.

F. = F . f

Eq. 7 [14] 

Eq. 8 [141F, =  F r - n k

After the tangential force is calculated, the motor torque needed can be calculated 

using Equation 9.

7 ~ r ' r  Eq. 9 [14]

The power needed by the motor for a given specimen speed (co) can be calculated 

using Equation 10. The variable Cp is the number of contact points on the testing surface 

(3 for the S-RCF and ZF-RCF testers).

P  =  C p - T - c o  Eq. 10 [14]

Figure 13 demonstrates how different combinations of motor speeds and applied 

loadings change the power needed from the motor under dry rolling conditions. Figure 

14 shows the same relation for sliding under different lubrication conditions. The dashed 

vertical line in each figure is the specimen motor speed from the First requirement (3600 

rpm).
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----- 1.5 GPa - * -  2.1 GPa —  3.0 GPa

Motor Speed (RPM)

Figure 13 Required Motor Power for Various Applied Loadings under Dry Rolling 
Conditions

->*-1.5 GPa (Dry) —*—2.1 GPa (Dry) 3.0 GPa (Dry)

----- 1.5 GPa (Thin F ilm )------ 2.1 GPa (Thin F ilm )------ 3.0 GPa (Thin Film)

Motor Speed (RPM)

Figure 14 Required Motor Power for Various Applied Loadings under Dry and Thin Film 
Sliding Conditions
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Using the information from Figure 13 and Figure 14, Penta-X decided to use a ten 

horsepower motor to run the S-RCF tester. In a rolling situation, testing can be 

performed at max speed of approximately 8000 rpm, well above the requirement of 3600 

rpm. In a sliding, thin film condition, testing can be performed at 3.0 GPa Hertzian 

pressure at a speed of approximately 3000 rpm. Although this is slightly lower than the 

3600 rpm requirement, the number of cycles needed for failure will be less than rolling 

conditions. In a dry sliding condition, the max load that can be applied is 2.1 GPa 

Hertzian pressure at a speed of 1000 rpm. In dry conditions, the number of cycles until 

failure should be much less than any lubricated situation. The motors selected for the S- 

RCF tester will be discussed in this chapter in the Driving Mechanism section.

Main Structure

The main structure is the central component of the S-RCF tester. It can be broken 

down into four subsections: the base structure, the internal structure, the driving 

mechanism and the loading mechanism. Several pictures of the S-RCF tester are taken 

from the Pro-E® model to demonstrate concepts more clearly. Other pictures are 

photographs of the actual S-RCF tester since this will give a better sense of what is being 

described. Figure 15 shows the Pro-E® model of the main structure and Figure 16 is a 

photograph of the S-RCF tester main structure.
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Figure 15 Pro-E® Model of the Main Structure of the S-RCF Tester

Figure 16 Main Structure of the S-RCF Tester
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Base Structure

.Inner Walls

Bearings

I

Figure 17 Pro-E® Model of the Base Structure of the S-RCF Tester

The base was constructed by welding two twelve inch channel irons to each other. 

The inner walls were precision machined at Northern Valley Machining in Grand Forks. 

ND. The inner walls and side oil walls are attached to the base with screws. The inner 

wails are attached to the side oil walls in the same way. The bearings were press fit into 

the inner walls. The inner walls also have an oil hole to allow for better flow of the 

lubricant.

The base structure is where most of the other parts attach. The four major parts of

the base structure are the base, the inner walls, the bearings and the side oil walls. The

parts can be seen in Figure 17 which is the Pro-E® version of the base structure.

Base
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Internal Structure

The core of the S-RCF tester is the internal structure. This is the part of the 

machine where the actual testing takes place. The part with the surface that is being 

tested is called the specimen. The parts with a surface in contact with the specimen are 

called the rollers. Figure 18 shows a picture of the specimen and rollers used in the S- 

RCF tester.

Figure 18 Specimen and Roller for S-RCF Tester

It can be seen in Figure 18 that the specimen is a tapered cylinder with tabs. This 

taper serves two functions. First, it limits the contact width between the rollers and 

specimen. The test surface is only 5mm (0.197 in.) wide. This size was chosen because 

the failure detection system of the S-RCF tester uses a probe with a scanning width of 

5mm. Secondly, the taper acts as a crack initiation site. If a cylinder specimen was used, 

the tester would be measuring the compressive strength of the material being studied 

rather than the improvement of the surface finish.
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T he roller diameter is three times larger than the diameter of the test surface on 

the specimen. The size difference ensures that the rollers do not fail before the specimen. 

Since the rollers are three times larger, the circumference is three times larger. Under 

rolling conditions, one revolution of the roller is three revolutions of the specimen. Since 

three rollers contact the specimen, one revolution of the specimen equal three loadings. 

Therefore, for one roller revolution, the roller has only been loaded once while the, the 

specimen has been loaded nine times.

The internal structure is comprised of three assemblies: the top roller assembly, 

the specimen assembly and the bottom roller assembly. The top roller assembly and the 

specimen assembly slide vertically into the inner walls. These two assemblies are shown 

in Figure 19. The bottom roller assemblies are fixed in the inner walls. Figure 20 shows 

the Pro-E® model of the internal structure with the base attached and one inner wall.

Figure 19 Top Roller and Specimen Assembly
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Top R.oller Assembly

Bottom Roller 
Assemblies

Specimen Assembly

Figure 20 Pro-EC® Model of the Internal Components of S-RCF Tester

All of the assemblies have metal collars on them. There are three types of collars 

used in the S-RCF tester: a hinged collar, a regular collar and a keyed collar. The hinged 

collars are used on stepped portions in the shafts of each assembly to prevent axial 

motion. The regular collars and keyed collars are used to hold the rollers in place. The 

keyed collars have keyways in them to allow the shafts to be pulled out when lined up 

correctly. The keyed collars and regular collars have roman numerals engraved into their 

outer surface. Roman numerals I and II are engraved on the collars for the bottom roller 

assemblies and Roman Numeral III is engraved on the collars for the top roller assembly. 

Figure 21 shows each type of collar used in the S-RCF tester.
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Keyed
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Regular
Collar

Hinged
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Figure 21 Types of Collars Used in the S-RCF Tester's Internal Structure

The free end of each shaft in each assembly has a 1/4-20 UNC tapped hole. This 

allows a small flat disk (called the tightening disk) to be screwed onto the end of the 

shaft. The tightening disk is large enough to set over top of the bearings in the inner wall. 

The tightening disk removes any gaps between the collars. Figure 22 shows the 

tightening disk on the top roller assembly.

Figure 22 Tightening Disk on Top Roller Assembly

Under loading, the only significant contact point for the top roller assembly is 

between the top roller and the specimen. This ensures that the load applied to the top
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roller is completely transferred to the specimen. In the same way, the only significant 

contact point for the specimen assembly is with the rollers. The rollers are spaced 

symmetrically (120°) around the specimen. Neglecting the weight of the top roller and 

specimen, the bottom rollers return the same magnitude of force applied to the top roller.

Top Roller 
(Slides Vertically)

Applied Force

Specimen 
(Slides Vertically)

Reaction Forces

Figure 23 Diagram of Symmetrical Spacing (120° apart) of the Rollers Around the 
Specimen and the Applied and Reaction Forces under Loading

D riving Mechanism

Using the criteria developed in the Design Requirements, two motors were 

selected to drive the S-RCF tester. Both motors are Alien-Brad ley® CM203- 

NVO1035AXZ1IA-547 which operates on 230V or 460V three phase AC power. An 

encoder is attached .to each motor for precision control of the speed. The maximum 

speed that can be maintained ai 10. UP is 3550 rpm. The maximum speed is 4150 rpm. 

Larger and faster motors were available but Were considerably more expensive.

The motors enter into the end oil walls through an oil seal. These oil seals allow 

for submerged testing to be performed. The roller motor drives the rollers shafts through

32
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a scries of spur gears. The spur gears have a three inch pitch diameter, a pressure angle 

of 20° and twelve teeth. Under loading, the gears are spaced so they mesh correctly. 

Figure 24 shows the gearing for the S-RCF tester.

Figure 24 S-RCF Tester Roller Motor and Gearing

The specimen motor connects to the specimen shaft by a spider couples. The 

spider couple allows for an angular misalignment of 1° and a parallel misalignment of 

.015 inches. Figure 25 is a picture of the specimen motor.

Figure 25 S-RCF Tester Specimen Motor
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The motors are controlled by two different controllers in a master-slave setup. 

The specimen motor is connected to the master controller. The master controller is the 

Power Flex 70. The motor that drives the rollers is connected to the Power Flex 700S, 

the slave controller. Figure 26 shows a picture of the controllers.

P o w e r ;-^
rro wu»a out v.

Specimen Motor 
Controller

Roller Motor 
Controller

Figure 26 Power Flex Controllers for the S-RCF Tester Motors

Loading Mechanism

The S-RCF tester uses two pneumatic cylinders to apply the desired loading. Th 

cylinders are aluminum tie rod cylinders, each with a bore of 4 'A inches and a stroke 

length of approximately 8 inches. The maximum allowable pressure in each cylinder is 

250 psi f I 51. These cylinders are located in the loading structure. Figure 27 shows the 

loading structure with several smaller parts labeled.
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Figure 27 View of the Back Side of the S-RCF Tester’s Loading Structure

The air flow to the cylinders is controlled by a three position four-way control

valve located on the back side of the loading structure. The three positions are up. down 

and off. In the down position, air is pushed into the top of the cylinders and loading is 

applied to the specimen. In the up position, air is pushed into the bottom of the cylinders. 

In the off position, no air is allowed in or out of the cylinders. The control valve can hold
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a maximum pressure of 150 psi, another limiting component for the amount of pressure 

possible in the S-RCF tester [16].

Air pressure can be supplied using a portable air compressor or some other 

external source. An air pressure regulator is used to set and maintain the air pressure in 

the cylinders. The regulator is rated for a maximum pressure of 150 psi and can operate 

at a maximum temperature of 125°F [17]. The accuracy of the regulator is ±3 psi or 

better [17]. The component is the limiting factor in the amount of pressure that can be 

applied by the S-RCF tester.

The pressure in the cylinders can be determined in two ways, visually or 

electronically. On the back side of the S-RCF tester is a pressure gage. This gage allows 

for an approximation of the pressure in the cylinders. For a more accurate reading, a 

pressure transducer has been installed in the same area. The pressure transducer can 

measure up to 200 psi of air pressure [ 18]. Figure 28 is the schematic for the pneumatic 

system. Additional information on the transducer can be found in Appendix A: 

Supplemental Test Data.
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Figure 28 Pneumatic Schematic for S-RCF Tester

When the cylinder rods are lowered, pressure is applied to the top roller assembly. 

As previously stated, the load is transferred completely to the specimen since the only 

significant contact point between the top roller assembly and the specimen assembly is 

between the top roller and the specimen. Figure 29 is the Pro-E® model of when the top 

roller and specimen are in contact. Notice that a gap exists between the top roller 

assembly and the specimen assembly. The inner wall on the left side of the figure has 

been removed for clarity.
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Figure 29 Pro-E® Model of Rollers and Specimen in Contact with One Inner Wall 
Removed

The ZF-RCF tester and the NASA gear test apparatus both use Hertzian pressure 

to define the amount of loading applied [13]. In converting Hertzian pressure to a radial 

force, a material’s Young’s modulus (E) is needed (see equation 5). Therefore, different 

materials will require different applied pressure to achieve the same Hertzian stress. A 

MathCAD® file in Appendix B can be used to convert Hertzian pressure to the pressure 

needed for the S-RCF tester. Figure 30 shows the relation for AISI 8620 steel.
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1 Temperature Probe
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Hertzian Pressure (GPa)

Figure 30 Hertzian Pressure Conversion to Applied Pressure of the S-RCF Tester for 
AISI8620

Lubrication System

Temperature Probe 
Power Supply

PumpBlower Fan

Figure 31 Lubrication System for S-RCF Tester (Oil Flow Shown in Yellow)
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The lubrication system of the S-RCF tester can be seen in Figure 3 I and has 

several functions. First, the system was designed to test in dry, film or submerged 

conditions. Dry and film testing is accomplished by controlling the flow of lubricant 

through nozzles to the internal structure. Two nozzles enter into the internal structure. 

The nozzle supplying lubrication to the gears needs to always be on during any test. The 

nozzle providing lubrication to the specimen can be turned off to perform dry testing or 

on to perform film testing. Figure 32 shows the two nozzles and the on/off controls for 

each.

Nozzle
On/Off Controls

Gear Lubrication 
Nozzle

Specimen 
Lubrication Nozzle

Drainage 
On/Off Controls

Figure 32 S-RCF Tester's Lubrication Flow Controls to Specimen and Gears

The second function of the lubrication system is to clean the lubricant and remove 

it from the system when the testing is completed. After leaving the internal structure, the 

lubricant is pumped through a three micron oil filter. The filter is placed before the pump 

to prevent harmful particles from entering the pump. The system can be flushed using 

gravity or by pumping it out. Before the filter is a three-way valve that directs the flow to
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the oil filter or to a reservoir. If a large amount of lubricant needs to be flushed, a second 

three way valve is placed after the pump. This allows the pump to pull the lubricant out 

of the internal structure.

The third and final function of the lubrication system is to control and monitor the 

lubricant temperature. Currently, the lubrication control system is manually operated.

The lubrication is pumped out of the internal structure into a filter. After leaving the 

filter, the lubricant’s temperature is measured by a thermistor probe. Information on the 

temperature probe can be found in Appendix C.

After the temperature is measured, the lubricant passes through the pump and 

flows into a radiator. A blower fan pushes air through the radiator to cool the lubricant. 

The blower fan speed is controlled by a rheostat. A complete schematic of the lubrication 

system can be seen below in Figure 33.

LEG EN D

a Specim en Box < ^ >  o il Filter

2 Gear B ox g  On/Off Valve

3 Exit R e se rvio r -^jv| Three-W ay Valve

t = = | Radiator

(P» Tem perature Probe

2"  Oil Pum p

Figure 33 Schematic of the S-RCF Tester’s Lubrication System

Failure Detection System 

Nondestructive Inspection (N D I) Methods 

Many methods are available to perform non-destructive testing and inspection. 

For the S-RCF tester, a few requirements were decided upon by Penta-X. First, the
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detection method needed to be portable. Secondly, the detection device would have to be 

capable of monitoring a spinning part. Since subsurface cracks were possible, the third 

requirement was that the device be able to detect these cracks. Finally, the detection 

method must be safe to use on a daily basis. Most of the contact fatigue testers discussed 

previously used vibration monitoring or eddy current monitoring for failure detection. 

Table 5 shows some basic characteristics of several ND1 methods available.

Table 5 Basic Characteristics of Common NDI Methods [19]

In
exp

en
sive

P
o

rtab
le

T
rain

in
g

/S
kill

R
eq

u
ired

P
art P

rep
aratio

n
 

R
eq

u
ired

In
 S

itu
 

M
o

n
ito

rin
g

A
cce

ssib
le

 to 
P

ro
b

e

S
afety H

azard

S
en

sitivity

A
b

ility to D
etect 

S
u

b
su

rface

H igh Lo w High Lo w High Lo w

V is u a l In sp e ctio n X X X X X
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M a g n e tic  P a rticle X X X X X

E ddy C u rre n t X X X X X X X

U ltraso n ic X X X X X X X X

X -R ay R a d io g ra p h y X X X

Isotope R a d io g ra p h y X X X

V ib ra tio n  M o n ito rin g X X X X X

Based on the criteria listed above, the two methods that seemed the most 

promising were the eddy current and ultrasonic methods. Both methods require reference 

standards, since signal interpretation takes some skill and training. Due to availability 

and information at the time, the eddy current method was chosen for the failure detection 

system in the S-R.CF tester.
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Eddy Current Inspection and Parameters 

Eddy current inspection works on the principles of electromagnetic induction. 

Therefore, materials must be electrically conductive for this method to work. Figure 34 

shows the different fields that are produced in eddy current detection systems.

AC Pow er-v.

I * m m ®

Eddy Currents

Flaw
Workpiece

Conducting
Coil Magnetic Field

| p i -

An AC current is supplied to a conducting coil. This coil produces a magnetic 

field (shown in blue). When a conductive material is placed close to the coil, eddy 

currents (shown in purple) are induced into the material. These eddy currents will 

produce-a secondary magnetic field (shown in yellow) which opposes the magnetic field 

(shown in blue) of the coil. When a flaw is present on the work piece, the eddy currents 

are disrupted. This disruption changes the impedance of the material and can be output 

as a voltage change [20].

The conducting coil is placed inside a casing called a probe. Probes come in 

several different types: absolute, differential, reflection and hybrid. Absolute probes have
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a single test coil and measure the absolute change in impedance. These probes are used 

in many applications including flaw detection, conductivity measurements and thickness 

[20], Since there is only one coil, absolute probes are sensitive to temperature, lift-off, 

vibrations and conductivity [20].

Differential probes have two coils with AC current passing through them. These 

types of probes measure the difference in signal between the two coils. Therefore, 

differential probes are sensitive to flaws while being insensitive to temperature, 

vibrations, conductivity and lift-off [20]. Since two coils are used, signal interpretation 

may be more difficult. In the case of a crack wider than the spacing between the two 

coils, only the edges of the crack would be detected. The signal output of the two coils 

would be the same over the middle of the crack.

Reflection probes have two coils; however, only one coil has current passing 

through it (the driver coil) while the other coil senses the changes in the test material (the 

pickup coil) [20]. This coil configuration is used since the individual coils can be 

optimized for a specific purpose. The driver coil can be made to induce a strong 

magnetic field while the pickup coil can designed to sensitive to small defects [20].

Hybrid probes are usually designed for specific purposes and can act as an 

absolute, differential and/or reflection probe [20].

The eddy current detection system used by the S-RCF is the Foerster 

Defectomat® EZ 2.828. This inspection system allows for eight different inspection 

frequencies. Material to be inspected can pass beneath the probe at a maximum speed of 

120 m/s (24,000 feet/minute). At 3,000 rpm, the S-RCF specimen is only traveling at 

approximately 6 m/s. Additional information about the Defectomat® EZ can be found in
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Appendix C. The probe used by the S-RCF tester is a differential probe. The differential 

probe has the ability to monitor crack size and growth. Figure 35 shows a picture of the 

Defectomat® EZ. the differential probe and the probe holder.

Figure 35 Foerster® Defectomat EZ 2.828 Eddy Current Detection Device

The factors affecting the eddy current detection system's performance can be 

broken down into two categories. The first category is the electrical properties and 

surface characteristics of the material. For eddy current inspection to work, the material 

must be electrically conductive. The electrical conductivity of a material is influenced by 

the alloying, hardness, temperature, residual stresses and coatings applied to the material 

[21], Surface characteristics that affect the eddy current inspection method include the 

surface finish, residual stresses and surface roughness. Since these parameters are 

material characteristics, they cannot be controlled during a test. For a batch of specimens
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with the same surface characteristics, the baseline eddy current output should be similar 

for all of them.

The second category of factors is the setup of the eddy current inspection system. 

These factors include the inspection frequency and the lift-off. The inspection frequency 

is the frequency of the eddy current inspection system. This factor will determine the 

system’s sensitivity to discontinuities and the depth of penetration into the material [19]. 

The density of eddy currents decreases exponentially as you move deeper into the 

material. This is demonstrated in Figure 36. The smaller the eddy current density, the 

less sensitive the eddy current device is to cracks.

A C A C

a&>
a

Eddy Current Density

High Frequency 
High Conductivity 
High Permeability

Eddy Current Density

Low Frequency 
Low Conductivity 
Low Permeability

Figure 36 Eddy Current Depth of Penetration [20]

The standard depth of penetration (8) in millimeters can be found using Equation 

10. This is the depth at which the eddy current density has decreased to approximately 

37%. In Equation 11, a is the material’s conductivity (mhos/m), j.im is the magnetic 

permeability of the material, p<> is the magnetic permeability of free space and fnz is the 

eddy current inspection frequency (Hz).
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I

V®1' n ' ' Mo ' f n z  Eq. 11 [22]

For a curved surface, a limit (or characteristic) frequency can be calculated. The 

limit frequency (//,„„,) is the inspection frequency where the strength of the magnetic field 

penetrating the surface is the strongest [22]. The limit frequency can be found using 

Equation 12.

f  —________ \_________•' lur.lt 2
2 ‘ n  rV - v - M m - M n  Eq. 12[22]

Lift-off is the distance between the probe and the piece being inspected [ 19], As 

the lift-off increases, the sensitivity to impedance changes (surface and subsurface 

discontinuities) decreases. The sensitivity decreases because the eddy current density 

decreases. Therefore, it is usually preferable to minimize the amount of lift-off [19].

The impedance measured by the eddy current detection device can be broken up 

into two components, the resistive and the reactance. The resistive component is the real 

part of the impedance and the reactance component is the imaginary part. On an 

oscilloscope, the resistive component is usually displayed on the abscissa and the 

reactance component is usually displayed on the ordinate. Therefore, the resistive 

impedance is labeled X and the reactance impedance is labeled Y.

The Defectomat® EZ 2.828 has an oscilloscope on the front panel that can 

display the impedance in four different forms. Three of the displays are plotted against 

time on the abscissa. The first display plots the Y component on the ordinate, the second 

display plots Y2 on the ordinate and the third display plots the vector (V) on the ordinate. 

V can be found from the X and Y components of the impedance, as shown in Equation
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13. The fourth type of display plots the X component on the abscissa and the Y 

component on the ordinate.

V ^ ( X f + ( r Y  Eq .13

Data Manipulation System 

Data Storage

Several test parameters are monitored and recorded during a test. These 

parameters include the applied loading, specimen speed, slip ratio, oil temperature and 

eddy current voltage readings. Recording these parameters requires eight input channels. 

The data is recorded using a TEAC LX-10 recording unit. Information about the 

channels recorded can be seen in Table 6.

Table 6 Channel Descriptions for the TEAC LX-10 Recording Unit

T E A G.i
C h a n n e l

C h a n n e l
D e s c rip tio n

M o n ito rin g  U nit
V o lta g e

R a n g e
C o n v e r s io n

F a c t o r
U n its

1 Y -com ponent D efectom at®  E Z 2 .828 0 to 1 1 V
2 ' ^ c o m p o n e n t D efectom at®  EZ 2:828 0 to  1 1 V
3 V ' D efectom at®  EZ 2.828 O to  1 1 V

'
Y A2 D efec tom a t®  EZ 2.828 0 to 1 1 V

5
C ylinder
P ressure

P ressure  T ransducer 
PX2.09-200G5V

O to  5 40.169 psi

6 Gil
; Tem perature

' Therm istor. P ipe 'B lug  
T H X 400  NPT-72

0 to  10 : 21.091 C e lc ius
•v •»v V'"

7
... c  -

' S p e c im e n ' 
M oto r Speed

Pow erF lex 70.0S -10 to  10 416.5 | RPM
;".r- v- ....v , v  -

8
•

.-R o lle r,M o to r 
S p e e d y

P ow erF lex 7,0 10 to  TO 416.5 RPM

The conversion factors for the cylinder pressure, oil temperature and motor speed
; " r K y.\'"i ,v'T • ... *

were determined by calibrating each monitoring unit. The calibration of the pressure 

transducer was accomplished by using a ! IART® Communicator Model 275 and a
• fT,;"

. . .  . . .

Rosemount i 1 51 DP Differential Pressure Transmitter. The air compressor, pressure
g ■ ■ : v *; .w ■

^transducer and 11 ART® Communicator were all connected to the I I 51 DP Transmitter.
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The voltage value of the pressure transducer was recorded along with the pressure value 

on the Hart® Communicator. These values were then plotted and a linear regression 

analysis was performed to determine the conversion factor. The graph and equation from 

this analysis can be seen in Figure 37.

♦— Pressure D a t a ------ Linear (Pressure Data)

Figure 37 Calibration Results for the S-RCF Pressure Transducer

The temperature probe was calibrated using a type K thermocouple connected to a 

Fluke 2620 Hydra Data Acquisition Unit. The temperature probe and the thermocouple 

were placed in a mixture of 50% ice and 50% water. This mixture was slowly heated and 

the voltage from the temperature probe was recorded along with the temperature 

displayed on the Fluke. A linear regression analysis was performed on these values and 

the conversion factor was determined. The results of this analysis can be seen in Figure 

38.
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T'he last conversion factor to be determined was between the voltage from the

Vi'; )H ..Sff •

«5;; ■-

motor controllers and the.actual-motor speed. The speed of the motors was determined

by using a Strobotac 1531 -A- stroboscope. A signal of 1 volt was sent to the controllers
/; V. tr •

and the measured mot< r speed was approximately 416.rpm. The conversion factor is
s i

0  •
4:16,5 rpm since the maximum motor speed is 4165 and the maximum voltage into the

■ ••fv-T-’-'.'- r‘ : .
controller is 10 volts.

After the conversion factors were determined, the next step was to decide how to

rec'ord.the information. As stated in the Design Requirements section, contact fatigue 

testing can take up to 30.million cycles, for the S-RCf tester. 30 million cycleswould.
' I.-*-' ’>'• - • * ' ’ • ■ ' ' • ’. ‘ s.V-

■:,•, ‘i f ■ ■ v5Sv.f■■ ̂ .y .... a .
testing can take i

’v .;. - v j - f 0  .*£•
take approximately 48hours of testing at 3600 rpm. Since testing.takes a significant

amounUof time, continuous data recording and storing is not reasonable. Also, fatigue

$ >'V*’V \ *.■ ’*.•*• V  sv : . .*u''* • • • • * * . >'
:.v , ;  ;

•'Vi' '‘i f •: .y   ̂ ‘ .
$V f;V  ,. ' T -
' d r .  . V."
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failure does not occur suddenly. Therefore, the change between one load cycle and the 

next will be insignificant. Instead of continuous recording, data is taken at user specified 

intervals. The TEAC LX-10 comes with a program called LX-Navi that is used to record 

data intervals. Each data interval captured is recorded into a header (extension .hdr) and 

data (extension .dat) file format. The LX-Navi main window is shown in Figure 39.

Figure 39 LX Navi Program Window

Several parameters need to be setup to record with the LX-Navi program. First, a 

new file must be opened for every recording session. This can be done by either pressing 

ctrl+n or by clicking New in the File drop box. In this new window, the user can set 

where to save the files, the number of zeros after the file name, the file name and what 

storage device to use. This window is shown in Figure 40. The file name needs to be an 

's ' (for specimen), followed by the specimen number, wiiich is then followed by an ‘F’ 

(for file). Therefore, the files for the first specimen should have a filename starting with
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‘si F \ The storage device is the PC; hence, the PC Recording option should be selected. 

The number of zeros after the file names needs to be set to five. If any other value is 

used, the Matlab® files need to be modified. At a value of five, 32,767 files can be 

saved.

C: £SOECDsta\8channeltest

i+i __| 24ede50e1 e w :i
Q  9a32a29283 ~  
C l ADV MCD |  

EH C ]  cabs 
03 C l  canon 
EH Q  Desktop extr 
a  Cl Documents« 
ffi Q  Drivers App:
3  Q  ESC

3  Q  ECData 
fS I 8chs

File j Date

&S1F00CI1 ... •• 03/25438 I f
•|E| S1F0002 03/25108 IT  15 31,
[tS| S1F0003 . ' 03/2543811:16 (j1
©  S1F0Q04 .: 03/254381.111,6:31
B  i \ FG005 ■ ■ Oj /25408-11 .1.7.01
Is ls iF o o o q . 03/2543611,17:81
S  slFOOO?; 03/25/08.11:18:01'
151 s i F0Q08 03/2543811:18/.31
Iroi s1F0009 03/25438/1 r;19;3t

Comment j <LX-10>

C:'ESC'£CData\8channeltest

s1F

p  PC Recording f "  Autn -Awing

Filename

Zeros in 
Filename

Figure 40 LX-Navi New File Window

After setting the new file options, the next parameters to set up are the system 

properties. This window can be reached by clicking System under the Setup tab or by 

selecting the System button as shown in Figure 39. In the system window, three tabs are 

available. For the S-RCF tester, only the system tab and Slotl (PA-8) tabs are used. The 

window for the system tab in the System window can be seen in Figure 4 1.
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Figure 41 LX-Navi System Window System Tab Menu

Under the system tab, the sampling rate of the LX-Navi can be set. The sampling 

rate determines the number of points that will be recorded every second. This value 

depends upon the speed of the surface turning and the size of the area being recorded.

The number of scans per revolution (S) needed is determined using Equation 14, where rs 

is the radius of the specimen and Wd is the width each scan covers.

2 - n r . .

Eq. 14
S  =  -

w .

The minimum recording frequency (Fm) can be determined using Equation 15, 

where cos is the rotational speed of the specimen. A factor of two is present since the 

Nyquist principle states that the sampling frequency should be twice that of the actual 

frequent measured.

F m =  S  O '  • 2 c . ,' Eq. 15

For the eddy current detection system, the scanning area of the probe is five 

millimeters. The maximum speed of the S-RCF tester is approximately 3,600 rpm
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(60Hz). Under these settings, the data is collected at a frequency of approximately 3 

kHz. However, since a curved surface is being monitored, it is recommended that the 

defect width be taken as one millimeter. This recommendation increases the sampling 

frequency to approximately 14 kHz. For the LX-Navi, the closest value over 14 kHz is 

24 kHz.

The other values that need to be set in the system tab are the clock and the number 

of channels to record. The clock can be synchronized with the PC time by clicking the 

PC button. Only the check box by Slot t should be checked since this is the slot that all 

the data is being input into. Under Slot 1, the number eight should be selected since this 

is the number of channels to be recorded.

The second tab in the System window is the Slot 1 (PA-8). Figure 42 shows the

window for this tab.

System

Calibration
Values

i
0  System g  Slot1(PA-8) g  Slot2(AO-8) j 

■....- " Ik * — 1

£ Si
t

: f f l

a
,1

jw . -r DC OFF

I# ▼ DC OFF

j1V • "T DC OFF ■ H i
| iv ....I

Z J DC OFF H m
jiov ■ ▼ DC OFF

10V •T' DC OFF

10V ■w OC OFF HUSH

—1. o < ▼ DC OFF

■"r: v  ..- v*v . i -
■ »

Figure 42 LX-Navi System Window Slot 1 (PA-8) Tab

The Slotl (PA-8) tab calibrates each channel manually or automatically. By 

clicking the Auto button, the LX-Navi measures the current voltages coming in and
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calibrates itself. This method is not recommended since the signal is expected to increase 

as a defect or defects appear on the surface. If automatically set, the max limit may be set 

too low and any value above the calibration number will be cut off. Instead of the auto

calibration button, each channel can be set manually by the user. The voltage values that 

can be set for the LX-Navi are 0.01,0.0316, 0.1,0.316, 1.00,3.16, or 10 volts. Based on 

the information provided in Table 6, channels one through four should be set to 3.16V 

and channels five through eight should be set to 10V.

Due to the volume of information being recorded, data will be taken at user 

specified intervals. Therefore, the last parameter to set up tor the LX-Navi is the trigger 

for recording data. The trigger window can be accessed by either clicking on the trigger 

button in the main LX-Navi window or by clicking Trigger under the Setup menu. A 

view of the Trigger window can be seen in Figure 43.

Figure 43 LX-Navi Trigger Window
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In the Trigger window, the Interval check box should be selected. The interval 

option requires several parameters to be set. First, the start time needs to be set. This is 

when the first data will be recorded to the first file. Next, the RecTime and Interval Time 

values need to be set. The RecTime is the time that the data will be recorded and the 

Interval r ime is the time between each recording. Each file represents the S-RCF tester 

values over the interval time. The number of load cycles represented by each file (LCPF)

can be determined using Equation 16. The variable C° s is the specimen speed in rpm, RL 

is the RecTime in seconds and IL is the Interval Time in seconds. Equation 16 has been

graphed in Figure 44.

L C P F  = cd, • 3 • (R , +  I ,  ) 
60 Eq. 16

------- 3600 RPM
— •— 3000 RPM 
— *— 2500 RPM 
— * - 2 0 0 0  RPM 
-------1000 RPM

Figure 44 Number of Load Cycles Represented by Each File for Various Specimen 
Motor Speeds
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In Figure 44, it can be seen that as the Interval Time and RecTime increase, more 

load cycles go unrecorded. However, since testing is expected to last several million 

cycles, this error would be negligible.

The number specimen revolutions stored in each file (Revf) can be determined by 

Equation 17 and has been graphed in Figure 45.

60 Eq. 17

Figure 45 Recording Time Needed to Store a Given Number of Load Cycles per File for 
Various Specimen Motor Speeds

From Figure 45, it can be seen that as the specimen motor speed increases, less 

recording time is needed to get the same number of specimen revolutions in a file. It is 

recommended that at least Five revolutions be recorded into a file. It is important to note 

that each specimen revolution is actually three load cycles, meaning five revolutions 

would be fifteen load cycles.
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All of the parameters for the LX-Navi discussed need to be set before a test can be

run. A summary of these parameters can be found in Table 7.

L o c a t io n P a ra m e te r V a lu e D e s c r ip t io n

F ile  -  N e w

F ilenam e s1F
s (spe c im e n ) 1 (sp e c im e n  num ber) 

F(file)

Zeros 5
S e ts  the  n um be r o f d ig its  fo r the  

file  nam e
PC  R ecord ing C he ck  Box R ecords D ata  to  PC

S y s te m  - S y s te m

S a m p le 48 kH z S e ts  record ing  speed

PC  C lock S et
S e ts  th e  LX-Navi c lo c k  to  th e  

cu rren t c o m p u te r tim e

S lo t U se
Check. S lo t 1 S e ts  w h ich  s lo t to  record  from

8
S e ts  th e  n um be r o f ch a n n e ls  to  

record  on th e  S lo t

S y s te m  - S lo t !  (PA -8)

V o lta g e  C a lib ra tion  
C hanne l 1-4

3 .16 V
S e ts  th e  vo ltage  range o f ch an ne ls  

1 -4 -on the  T E A C

V o lta g e  C a lib ra tion  
C hanne l 5-8

10V
S e ts  th e  vo ltage  range o f ch a n n e ls  

5-8 on  th e  TE A C

T r ig g e r

Internal S e tu p
C he ck  

Interval B ox
S e ts  the  TE A G  to  record  in u se r 

defined  intervals;

S ta rt T im e U ser defined '1
The tim e 'a t-w h ic h  th e T E A G  w ill 

reco rd1 the  firs t file  ...
R ecord -T im e 1 se c Length  o f tim e  the recorded  .

interval T im e 29 ?see
Length  o f tim e  betw een 

, su b se q u e n t reco rd ings  .

R epeat 32767
N um ber o t tim e s  the  T E A C  Will 

repea t the -R eco rd  T im e  and Iritc va l 
T im e

Data,.Analysis ..

Before data could be analyzed, a method.needed to be developed to interpret the 

data that was- beirtgcstored. T he first method attempted was to use .another program that- 

came with the LX-10 called LX-View. LX-Vicw is a.program thafa llo wsthe user- to 

view a file created by the LX-10. The LX-View program can also export the. information- 

saved into, several; different llle formats, including a MatlabX format. The export

5 8



www.manaraa.com

function contains a batch convert option to convert many files at once. However, after 

experimenting with the program, it was determined that the batch option did not work.

In attempt to solve this problem, TEAC was contacted via email. A response was 

sent by Steve Astulfi and Bo Prum stating they were unsure why the batch option was not 

working. As an alternative solution, a Matlab® file was attached to the email which 

reads the data file created by the LX-Navi and opens them directly into Matlab®. The 

file has been modified several times to make it functional for the S-RCF tester. The file’s 

name is Teac2Matlab and is located in Appendix B in the Matlab® Files section.

For a given specimen, several inputs are needed to run the Matlab® files. The 

determination of these values will be discussed in the Test Setup section. These input 

values are located in a file called T e s t in g P a r a m e te r s V a lu e s . This Matlab® file is called 

upon in all the other Matlab® files; therefore, it is important to check that the values in 

this file are correct. A summary of the input values needed by the 

T e s t in g P a r a m e te r s V a lu e s  Matlab® file is presented in Table 8.
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T a b l e  8 D e s c r i p t i o n  o f  I n p u t s  f o r  TeslingParametersValues M a t l a b ®  F i l e

V a r ia b le  N a m e D e s c r ip t io n U n its

in te rva ltim em in Interval tim e  to  c h e c k  if c ra c k  has occu rred m in

se cs_ to _ re ad T im e  to  read o f each  file s

sp e c im e n n u m b e r S p e c im e n  te s t n um be r

rec leng th T im e  each  file  is recorded s

recinterval T im e  betw een each  file  record ing s

s p e cm s S p e c im e n  m o to r speed R PM

s lip ra tio S lip  ra tio  be tw een su rfa ces  (m u s t be >1)

IVc1 In itia l m a x im u m  \® lue fo r channe l 1 V

IV c2 In itia l m a x im u m  \s lu e  for channe l 2 V

IV c3 In itia l m a x im u m  value fo r channe l 3 V

IV c4 In itia l m a x im u m  va lue for chan ne l 4 V

IV c5 In itia l va lue for channe l 5 psi

IV c6 In itia l va lue fo r channe l 6 °C
IV c7 In itia l va lue for channe l 7 R PM

IV c8 In itia l va lue fo r channe l 8 RPM

d e lta C I M a x im u m  a llo w a b le  ch an ge  fo r C hanne l 1 V

de ltaC 2 M a x im u m  a llow ab le  change  fo r C hanne l 2 V

de ltaC 3 M a x im u m  a llo w a b le  change  fo r C hanne l 3 V
de ltaC 4 M a x im u m  a llow ab le  ch an ge  fo r C hannel 4 V
de ltaC 5 M a x im u m  a llow ab le  ch an ge  fo r C hannel 5 %
d e ltaC 6 M a x im u m  a llow ab le  change  fo r C hannel 6 %
d e ltaC 7 M a x im u m  a llow ab le  ch an ge  fo r C hanne l 7 %
de ltaC 8 M a x im u m  a llow ab le  change  fo r C hannel 8 %

The student version of Matlab® is limited in the amount of information it can 

store and process at one time. Due to the large amount of information to be processed, 

the data saved is analyzed in three stages. These stages are the failure detection stage, the 

screening stage and the analysis stage. For each stage, a separate Matlab® file has been 

generated to analyze the data. In order to work properly, the Matlab® files that are 

needed must be in the same folder as the files to be analyzed. The scripts of all the 

Matlab® files used are located in Appendix B in the Matlab® Files Section.
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The failure detection stage is performed during testing and uses a file named 

R e a lT im e D a ta A n a ly s is . A flowchart description of the failure detection stage can be seen 

in Figure 46.

Figure 46 Flowchart Description of the Failure Detection Stage

As the R e a lT im e D a ta A n a ly s is  file is started, the motor voltages (corresponding to 

a motor speed) are sent to the motor controllers. These voltages are sent using the 

m o to r c o m m a n d  Matlab® file which sends the voltage values to the controllers using a NI 

PCI-6251 card connected to a NI BNC-2110 terminal block. After this, the computer’s
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clock is read and the program waits until the data file corresponding to the 

intervaltimemin variable is generated by the TEAC Recording unit.

After this data file is generated, the RealTimeDataAnalysis file calls upon another 

Matlab® file named ECThresholdCheckmax. The ECThresholdCheckmax has several 

functions. First, the file brings in the data using the Teac2Matlab file. Secondly, the 

values in each file are filtered down so that the absolute maximum and the absolute 

minimum values are stored. Next, the maximum and minimum values are processed into 

meaningful values using the conversion factors provided in Table 6. The third function 

of the ECThresholdCheckmax file is to plot the data. The maximum and minimum 

values from each file and the initial values specified by the user are plotted in two figures 

so the user can see what the values were. The first figure contains the plots of channels 1, 

2, 3 and 4. The second figure contains the plots of channels 5, 6, 7 and 8. These figures 

are saved as bitmap (file extension .bmp) files in the same folder as the data being 

recorded. The title of each graph states the specimen name or number, the TEAC LX-10 

channel being graphed and the start and stop time of the graph. Figure 47 shows a 

portion of one of the figures generated and saved.

62



www.manaraa.com

SRCF Specimen 2: Channel 5 
Start Time = 1200min End Time = IBOOmin

§ 68 
CD

i  66
I  64 

o  62

£ 70

2400 2500 2600 2700 2800 2900 3000 3100 3200

SRCF Specimen 2: Channel 6 
Start Time = 1200min End Time = 1600min

27.4 
|  27.2
2  27

» w  26.6 
t  26.4
°  26 2

2400 2500 2600 2700 2800 2900 3000 3100 3200

Figure 47 Example of Figures Stored during the Failure Detection Stage

The final function of the E C T h r e s h o ld C h e c k m a x  file is to determine if failure has 

occurred. The maximum value on each eddy current channel is compared to its initial 

max value to determine if the channel is still in range. If the maximum voltage is outside 

the range, the program issues a stop command to the motors using the m o to r c o m m a n d  

file and a message appears in the Matiab command window stating which channel is out 

of range. If the all of the values a.e in range, the program resets itself and waits for the 

next time interval to check again. At the end of the test, the figures saved can be 

regenerated over a larger time frame to reduce the number of figures. This is done by 

specifying a larger in te r v a l t im e m in  and restarting the program. Since the program looks 

for the files and all the files are generated, the program will generate and store the graphs 

as fast as it can.

Max Values 
Min Values 
Initial Value

63



www.manaraa.com

After a crack has been detected and the machine has stopped, the next stage in 

data analysis is the screening stage. Screening narrows down the point at which crack 

initiation is suspected to have taken place. The Matlab® file used is called 

T2Mv2Screening. The T2Mv2Screening file graphs the absolute values of the mean, 

minimum and maximum values of each file for a user defined interval. Instead of a time 

interval, this interval is based on the file numbers selected to analyze. An example of the

figures generated by the screening file can be seen in Figure 48.

7 6 7 2 4 4  

1  72.5635m
|  68.40270- CD
m ~  64.2418
13

€  60,0809

SR CF S pecim en2: Channel 5 
S tart T im e=1499.5m in End T im e=1875m in

T i l  ’i x V v V  i i  ̂n

55.9201
3000- 3.100 3200 3300 3400 35 00  3600 3700

SRCF Spec-imeoZ: Channel 6 
S tart T im e=1499:5m in End Tim e=T875m in

■ Max V a lues

■ M in V alues
■ Mean V a lues

■ Initia l Value

6 : 
CDbr-
<5

Figure 48 Example of Figures Generated during Screening Stage

The absolute maximum value is analyzed since any change in the surface needs-to 

be detected. The eddy current voltage output for a relatively smooth, crack free surface 

should be constant. However, due-to some variation in the surface quality, a little noise is 

expected. The .peak values (high and/or low) of this noise wi ll grow steadily as a crack 

forms. The faster the crack propagates, the quicker the increase of the peak voltage 

values. Since the absolute value is -used* measuring the size of the crack and determining 

the orientation cannot be done.
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After it is determined where the crack started, the final stage, the analysis stage, is 

to analyze the raw data using the Matlab® file called T2Mv2Analysis. This file imports 

the raw data over a user defined file range and plots the values on a continuous axis. 

Figure 49 shows the graphs generated by the T2Mv2Analysis file.

SRCF Specimen Sample: Channel 1 
Start Time=888.5min End Time = 1088min

0.4

600 650 700 750 800 850 900 950 1000
SRCF Specimen Sample: Channel 2 

S ta r t  Time=888.5min End Time = 1088min
0.4

Figure 49 Example of Figures Generated during Analysis Stage

Summary of S-RCF Tester Abilities and Controls 

The S-RCF tester can operate in several different conditions to test different 

parameters. The first condition that can be changed is the lubrication. By turning certain 

flow control valves (FCV) on or off, a specimen can be tested in a dry, lubricated or 

submerged environment. The second condition is the slip or slide ratio between the 

surfaces. Since two motors are used, the specimen speed and roller speed can be 

different. This allows for a rolling or sliding condition between the two surfaces. The
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third condition that can be varied is the loading applied. The maximum allowable 

pressure in the pneumatic system is 150 psi.

Most of the controls for the S-RCF tester are manual. The motor speeds are 

entered into the Matlab® script before testing is started. Once testing has started, the 

speed of the machine cannot be changed. Since the speeds cannot be changed, the sliding 

or rolling conditions can not be varied during testing. The loading is also manually 

applied and maintained. The air pressure regulator is set to the desired pressure and 

variability. The lubrication temperature is only monitored and not controlled. The 

blower fan speed on the lubrication system can be varied by the rheostat; however this is 

not a direct control over the lubricant’s temperature.

In the event of a catastrophic event during tester, the emergency button on the 

motor controller box should be push in. This cuts off power to the controllers, thereby 

stopping the machine. The machine should shut itself off since the eddy current signals 

would be out of range. Since the pneumatic loading system is manually controlled, 

loading is still being applied to the specimen.
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CHAPTER 3

TESTING PROCEDURE AND CONDITIONS

This chapter documents the test setup and disassembly procedures used when 

performing fatigue testing with the S-RCF tester. It also describes the testing conditions 

and failure criteria used in performing these fatigue tests.

Test Setup Procedure

The first step in setting up a fatigue test with the S-RCF tester is to design and 

order the rol lers and specimens to be tested. The drawings of these parts are located in 

Appendix D: Specimen and Roller Drawings. Along with these dimensions, several other 

parameters need to be specified. These parameters include the roughness, microstructure 

composition and hardness. The hardness and microstructure composition are affected by 

the type of heat treatment. The roughness depends upon the type of grinding or finishing.

The next step is to verify the properties and quality of the parts. The physical 

dimensions of several parts are measured using a caliper to determine if they are within 

tolerance. Every part must be examined visually to determine if any unacceptable 

scratches exist.

The surface roughness values of several parts are measured using the Surfcom 

480A profilometer. The profilometer moves a stylus across the surface and measures the 

height change. The device gives the user a print out of several roughness parameters, the 

most important being the surface profile picture, the average roughness (Ra) and the 

maximum roughness (Rm).
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The test bars manufactured are used to determine case depth and microstructure of

the parts. The case depth is determined by making several hardness measurements in a 

line starting near the edge of the cross-section of the tes bar and moving incrementally 

toward the center. The measurements stop when the effective hardness (the hardness of 

the non-carburiz.ed core) is reached. The microstructure is checked by polishing and 

etching the surface with different etchants. The treated surface is then placed under an 

SEM (scanning electron microscope) with tF apability to do EDS (electron dispersion 

spectroscopy) analysis. The EDS determines the microstrueture of the surface. Pictures 

of the surface also show the decarburized layer depth and if the final grinding removed

After the quality of the parts is verified, the next step is to set up the S-RCF tester. 

Two,people:and several tools are needed to setup the S-RCF tester. A detailed outline of 

the test-setup described next is provided in Appendix E. A list of the tools needed is 

provided in Table 9.

this layer

Table 9'TooIs Needed to Set Up the S-RCF Tester

Q u a n tity
2 3/16  in. A lle n  W re n ch

5/32  in '; A llen  W re n ch
2 3/4 in. S o c k e t and : R acque t
T 7 /16  in. W re n ch

1
1 - R ebar.R od

H am m er
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roller shafts are then pushed back into the bearing while the keyed collars are lined up so 

the key can move through. Next, the hinged collar on each shaft is tightened around the 

stepped portion of the shaft. In order to remove any further slack, the tightening plate is 

screwed into the end of the shaft to pull the shaft and collars in that direction. Finally, the 

set screws in the bearings are tightened to secure the shafts in place.

After tightening the bottom rollers in place, the end oil wall on the specimen 

motor side is attached. PTFE (polytetrafluoroethylene) tape is located on the ends of the 

side oil walls to prevent oil from leaking, which may need to be replaced if it is damaged 

or torn. The specimen end oil wall tightens against the side oil walls using ten 'A inch 

hex head screws. Then, the oil seal in the specimen end oil wall needs to be greased.

Next, the specimen sliding plates and probe holder are inserted into the S-RCF 

tester. The probe holder is attached to the specimen sliding plate on the specimen motor 

side. This assembly then slides into the inner wall. Slide the other specimen sliding plate 

with the small shaft and tightening plate into the other inner wall and attach it to the 

probe holder. The specimen shaft with the spider couple is then inserted into the oil seal 

located in the specimen end oil wall and the specimen sliding plate.

Insert the specimen by placing the tabs of the specimen into the slots in the shafts. 

The two hinged collars are tightened onto the stepped portion of each shaft. Remove any 

slack in the assembly by tightening the tightening plate on the end of the small shaft in 

the specimen sliding plate.

The next step after inserting the specimen is to move both of the motors into 

position. These motor require two people or a lifting mechanism to lift because they are 

very heavy. The specimen motor has a spider couple to drive the specimen. Align the
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spider couple and then bolt this motor into place. On the roller motor side, check the 

PTFE tape for tears or damaged. The roller motor has a gear attached to it and needs to 

be lifted into place so that the teeth mesh correctly. After this, the roller motor is bolted 

into place. Then attach the roller end oil wall to the side oil walls.

The eddy current probe is then inserted into the probe holder. The distance from 

the specimen is measured using a spark plug gap gauge. The maximum distance the 

probe can be away from the surface is one millimeter. The nominal distance is 0.5 mm. 

After it is in place, secure the probe by tightening the bolt on the probe holder. If over 

tightened, this bolt can damage the probe. Then tighten the nut on the bolt to ensure that 

the bolt does not vibrate out of the spot and release the probe.

Once the probe is in place, assemble and insert the top roller assembly into the S- 

RCF tester. Slide the top roller onto the top roller shaft, followed with the collars and 

then the top roller sliding plate. Tighten the tightening plate on the end of the shaft along 

with set screws on the bearings. Then lift the top roller assembly into the tester and slide 

it slowly into the inner walls.

The S-RCF tester is now fully assembled and ready for the test parameters to be 

applied. These parameters include the contact force and lubricant type. The load is 

applied manually using the regulator on the air compressor. Plugging in the air 

compressor automatically starts the compressor. The gauge on the compressor is a crude 

estimate of the pressure in the cylinders. A more accurate reading can be done by 

starting the LX-Navi program and monitoring the air pressure channel and converting the 

voltage to a pressure.
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Before adding the lubricant, check the flow control valves and the three-way 

control valves to ensure they are in the correct position. Lubricant must first be added 

into the oil filter and before connecting it into the lubrication system. Next, the lubricant 

is added by pouring it through a funnel into the internal structure onto the gears and 

specimen. Since testing will be going on for a significant amount of time, at least one 

gallon of lubrication should be added. The lubricant flows through the flow control 

valves when the handle is inline with the pipe to which it is connected. The direction the 

handle is pointing on the valve is the direction the lubricant flows. Plug in the pump 

motor for the lubrication system and flip the two yellow switches on the lubrication 

control box to the on position. These switches start the lubrication pump motor and the 

blower fan. If oil does not immediately start flowing, air may be in the system. Remove 

the air bye turning the flow control valve for the specimen on and off several times.

After the lubricant and loading are applied, attach the cover for the S-RCF tester. 

Place the top cover plates top of the oil walls and bolt them down. These top cover plates 

prevent lubricant from spraying out of the tester during testing. A slot is present in one of 

the plates because a previously used probe holder reached into the internal structure.

Now, because this large slot is used only for the probe cord to enter into the internal 

structure, there is a lot of extra space. This extra space should be covered to prevent the 

lubricant from splashing out of the machine

Next, power on and set up the eddy current device. Several input parameters are 

required for the eddy current device to provide meaningful results. These parameters 

include the inspection frequency, line speed, sensitivity, high pass Alter value and low 

pass filter value. These values can be changed by pressing the setup/test button on the
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front control panel of the eddy current device so that the display is flashing setup. Once 

the word setup is flashing, simply press the button of the value to change.

As discussed in the Eddy Current Inspection and Parameters section in Chapter 2: 

Failure Detection System, the inspection frequency determines how deep the eddy current 

penetrates into the material and the density of the current. A high frequency creates a 

high surface eddy current density but has a low depth of penetration. A low frequency 

has a low surface eddy current density but has a high depth of penetration. Also, the type 

of material and its properties affects the standard depth of penetration and eddy current 

surface density. A Mathcad® file in Appendix B: Mathcad® Files, has been created with 

the appropriate equations to determine the inspection frequency to use.

The line speed setting on the eddy current system lets the detection system know 

how fast the workpiece underneath it is moving. The line speed for the S-RCF tester is 

the surface velocity of the specimen. From the line speed setting, the high pass filter 

(HP) and low pass filter (LP) are set. The operating instruction manual for the 

DefectomafEZ 2.828 has the appropriate settings for the filters based on the line speed of 

the piece-being.monitored.

The sensitivity of the eddy current device determines the amount of noise picked 

up. The. larger the sensitivity value the larger the output is for a given flaw size. The 

maximum value for this setting is 62.5 db. This value must be calibrated for different 

materials and flaw sizes.

Now that the eddy Current device is on and setup, the TEAC LX-10 recording unit 

is ,powered up next. After this device is started, power on the computer. If the LX-10 is 

not on when the computer boots up. the computer will not recognize it.

72



www.manaraa.com

After the computer is on, the recording program is set up. The recording program 

used for the S-RCF tester is called LX-Navi. Details of this program and the settings to 

use can be found in Chapter 2: S-RCF Design under the Data Logging section; so, only a 

brief description is provided here. The first step is set the file settings for all the data that 

is going to be saved. First, start the LX-Navi program. Once the LX-Navi program is 

opened, click new file under the file tab. In this window, set the filename, where to save 

the recorded files, number of zeros in the file name and the PC recording option. After 

this, set the system parameters by clicking on the system button in the main window or 

by clicking system in the setup drop menu. In the system window under the system tab, 

synchronize the clock for the LX-Navi with the PC, set the sampling rate and set the 

number of channels to record. Under the Slotl(PA-8) tab, set the calibration value for 

each channel. Finally, set up the trigger for the LX-Navi program. The properties for 

this are set by opening the trigger window using the trigger button in the main window or 

by clicking trigger in the setup drop menu. In the trigger window, check the box by the 

interval option. The values to set for the trigger are the record time, record interval time, 

repeat count and start time.

Now that the recording program is set up, seven Matlab® files are dragged into 

the directory where the data files will be created. The Matlab® files include 

T2Mv2Screening, T2Mv2Analysis, Test Parameters Values, Teac2Matlab,

RealTimeDataAnalysis, motorcommand and ECThresholdCheckmax. Only the last five 

files mentioned are used during testing. The first two files listed are used after a test is 

completed and further analysis is to be performed.
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With the files in place, the monitoring devices and motors are powered on. The 

eddy current device should already be on and set up. The temperature probe power and 

the pressure transducer power are plugged into an outlet. Make sure the switches on the 

front panel of the controller box are in the off position. The off position ensures that any 

residual voltage in the controllers does not accidentally start the motors. Turn on the 

power to the motors and controllers by flipping the 13-15-17 and 37-39-41 breaker 

groups in the breaker box.

The last program to start and set up is Matlab®. Once opened, the working 

directory needs to be set to the folder where the Matlab® tiles are located. Next, open 

the TestParametersValues file and enter the values for the test to be performed. A list of 

the values to be entered can be found in Table 8. The initial and maximum change values 

have not.been determined yet. Save the file once the known parameters are entered.

Determining the initial values requires the machine to be started and data to be 

recorded briefly. First, go to the prompt window for Matlab®, type 

TestParametersValues into the prompt and press enter. This will run the 

TestParametersValues file which places the test values into memory. Next, type 

motorcommand into the prompt window and press enter. This command sends the 

voltages to the motor controllers; however, since the switches are in the off position, the 

motors do not start. The. lubrication systerrvand air compressor should-still be operating.

The initial values can be determined in two ways. The first way is to visually

Once 'they have reached-the desired speed, the initial values can beread.

read the values using the digital readouts available in the LX-Navi program. The digital
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readouts are activated by pressing the digit button in the main LX-Navi window or by 

clicking digit under the view drop box menu. Multiple digital readouts can be brought up 

by clicking the digit button in the digital readout window. Each readout window can be 

set to a specific channel. The readout will not display the current value until the 

r e c s la n d b y  button is clicked on. Figure 50 shows a screenshot of the digital readouts for 

the LX-Navi.

Figure 50 LX-Navi Digital Readout Windows

The second way to obtain the initial values is to actually record files to analyze. 

This method takes a bit more time but provides more accurate values. The files are 

created by simply clicking the r e c s ta n d b y  button in the LX-Navi main window. This 

button remains depressed, indicating it is ready to record values. Clicking the play button 

records a file for the interval the user specified in the trigger window'. Clicking play 

again records another file. Several files should be recorded and analyzed to achieve an 

accurate representation of what is occurring. The trigger does not record files at this 

point provided the start time set has not passed. The drawback to this method is that a
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new file needs to be set up. If a new file is not setup, the file numbering will continue 

from the last file the user created manually when the trigger time is passed.

Once the initial values are known, turn off the motors controller switches and 

enter the values into the T e s tP a r a m e n te r s V a lu e s  file and then save the file. The 

lubrication temperature is expected to rise significantly; therefore, the initial value on this 

channel should be set higher than what was recorded. The S-RCF tester is not currently 

set up to automatically control the lubrication temperature, only to monitor and record it. 

The pressure value will also vary slightly due to small leaks in the system.

After the initial values are entered, the maximum allowable change for each 

channel must be determined. The maximum allowable change of the eddy current values 

(channels 1 -4) determines when the machine will stop. These values are entered as an 

increment of voltage change from the initial value. This voltage change corresponds to a 

certain size defect or damage on the surface for a given set of conditions and material. 

Therefore, calibration of the material and different size defects should be performed prior 

to testing. The allowable change values for the pressure, lubrication temperature and 

motor speeds (channels 5-8) are not significant and only they serve to plot a line on the 

graphs. The maximum allowable changes for these channels are entered as a percentage 

of the initial value. Once all the allowable change values are entered, save the 

T e s tP a r a m e te r s V a lu e s  file and close the editor.

The S-RCF tester is ready to begin testing. Clear any old data in the folder so that 

the only files present are the Matlab® files. In the LX-Navi, open the trigger window 

and set the start time to an appropriate time (approximately 2 minutes from the current 

time). After thl press the .. * s ta n d b y  button. This button needs to be depressed in order
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for the trigger option to work. Open the prompt window of Matlab®, type 

R e a lT im e D a ta A n a ly s is  and press enter. This brings the initial values into the computer's 

memory and sends the motor speeds out to the controllers. A window prompt appears 

telling the user to start the TEAC recording system. At this point, turn the switches on 

the front of the controller box to on so the motors start. The motors spin up and reach the 

previously set speed. Click the OK button on the Matlab® pop-up window when the start 

time has passed.

The machine runs until the eddy current device detects a change over the user 

defined maximum allowable change. The machine should be monitored during the first 

ten minutes of operation to ensure that the graphs generated by Matlab® appear and 

display reasonable data. After this, check the machine periodically to ensure that it is still 

running correctly, nothing is out of range and enough lubricant is present in the system.

If lubricant is added, record the time since this affects the lubricant temperature reading.

If an emergency occurs, the large red button on the motor controller box can be pressed 

to stop the motors.

Test Disassembly Procedure

Before disassembling the S-RCF tester, the motors, monitoring systems and 

controlling programs must be turned off. Stop the motors by turning the switches on the 

controller box to the off position. At the computer station, the LX-Navi program may 

still be recording. Stop the program by clicking the stop button in the mam LX-Navi 

window. With the Matlab® prompt window as the active window, hold the ‘Ctrl’ button 

and press ‘c \  This terminates the loop command occurring in the program and stop 

Matlab®.
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Next, unplug the pressure transducer and temperature probe power supplies. The 

lubrication system can now be turned off. It should remain plugged in since it will be 

used later to remove the lubrication.

To gain access to the specimen, first release the load on the top roller. Remove 

the top cover to allow for a view of inside the S-RCF tester. Slide the top roller out of the 

tester. If it is jammed or hard to remove, reapply the load on the roller and tie a wire 

around the roller shaft and the push rod of the cylinder. Then, move the cylinder rods up. 

If connected tight enough, the wire pulls the top roller assembly up with it. The eddy 

current probe can be removed at this time. Next remove the top roller from the top roller 

assembly. The specimen is removed by taking off the hinged collars on the specimen 

assembly and then lifting it out.

I f the specimen only needed to be visual ly checked and rerun, the operator checks 

the specimen for failure and then places the specimen back into the tester and start 

everything again. However, if a new sp.i-< ; is to he run, then the bottom rollers need 

to be removed and replace, Re lore this can be done, the lubricant must be drained from 

the sv-" i nis is accomplished;both,automatically and manually. Flip the valves on 

the lubrication system so that the How is into the reservoir container. Then turn the 

lubrication system back on. The pump removes the majority of the lubricant from the 

tester. After no more lubricant is being pumped out, turn off the lubricant system and 

unplug it. Any remaining oil is drained by switching the valve in the lubrication system 

so that the lubricant drains out by itself. This amount of lubricant should be negligible.

The removal of the bottom rollers requires that both motors be moved so the end 

oil walls can be removed. Unbolt and move the specimen motor first. Then remove the. ' 'i ■ • -r • • * *
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specimen shaft from the specimen end oil wall. After this, unbolt and remove the 

specimen end oil wall. The roller motor is attached to the roller end oil wall; therefore, 

this wall must be unbolted first. After this, unbolt and remove the roller motor. Remove

the specimen sliding plates and the probe holder.

Next, unscrew and remove the tightening disk on the back of the bottom rollers 

shafts and the hinged collars. Also, loosen the set screws in the bearings. These steps 

allow the shaft to move axially. Push or tap the shaft axially in the direction of the gears. 

While the shaft is moving, the keyed collars need to be lined up with the key in the shaft 

to allow it to move. A ¥2 inch gap is all that is needed between the shaft and the bearing 

to slide off all the collars and rollers.

The S-RCF tester is now completely taken apart and ready to be set up for another 

fatigue test.

Testing Conditions and Failure Criteria 

The material tested was A1 SI 8620 because some data on this material was 

available and it is a common gear material. Before a large batch was ordered, a sample 

specimen with no numbering was ordered and. tested under a set of conditions. The heat 

treatment forthis part and/its properties were not tested or verified. After it was

■/TT" if ' ' • & A
V;

determined that the specimen and rollers would work, a large batch was ordered.

A-description of the heat treatment for the larger batch of specimens and rollers 

(developed with helpfrom,Damian Wilmot) can be found; in Appendix D: Heat

Treatment' for 8620. A total of twenty specimens, thirty rollers (ten sets) and three- A • • ' ffiTc ree test

;R.S Manufacturing Inc. located in Township, MI. The test bars are

v 'T t  '• • v  - ■ a  •

•V: ■ ■■ ■ f  • ■ - .:
:
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short cylinders heat treated with the parts to allow for verification of the properties. A 

summary of the significant values of the heat treatment can be seen in Table 10. 

fable 10 Heat Treatment and Surface Finish Specifications for AISI 8620

Property Value
Hardness 58 to  62 HRC

Effective Hardness 50 HRC

C ase depth 0.037 to  0.055 in. 
(.940 to  1.40 m m )

Surface Carbon 0.85 ± 0 .0 5
Average R oughness 16 to  20 m icro inch

M icrostructu re
M artens ite  + A us ten ite  

Retained A u s te n ite  - 10% m ax 
O ther Non-Transform ed P roducts - 5%

Verification of the quality of the parts was performed when the parts arrived. The 

roughness, microstructure and hardness properties were all verified on randomly chosen 

parts by several machines available at UND. The roughness was verified using the 

Surfcom® 480A located in the hydraulics laboratory at UND. This device measured the 

average roughness across the grind (axially) and with the grind (circumferential). The 

microstructure was checked using the energy dispersive X-ray Spectroscopy (EDS) 

capability on the scanning electron microscope (SEM). The hardness measurements and 

case depth were measured using a HM-112 Mitutoyo micro-hardness tester. This tester 

measures the micro-hardness using a Vickers tip and then converts the value to a 

Rockwell C hardness value. Hardness measurements were taken incrementally from the 

edge until the value reached or was slightly below the effective hardness value. At this 

point, the distance from this point to the edge was measured as the case depth.

Most of the specimens were tested under identical conditions. However, since 

modifications and information changed along the way, some tests performed were 

slightly different. A summary of the testing conditions that each specimen was tested 

under can be seen in Tabie 11.

8 0



www.manaraa.com

T a b l e  11 S u m m a r y  o f  S - R C F  T e s t i n g  C o n d i t i o n s  f o r  A I S I  8 6 2 0  S p e c i m e n s

Specimen Sample 11 2
S-RCF Tester C onditions

Lubricant Type 10W -30 T ra n sm iss io n  F lu id
Lubricant Amount F ilm  (sp rayed  o n to  su rface)

Start Date Feb. 5th 
2008

M ar. 18th 
2008

June 17th 
2008

Specimen Motor 
Speed (RPM)

1200 [2 16 ,0 00  Load C yc le s  per Hour]

Slip Ratio 0 (ro lling)

Average Cylinder 
Pressure (psi) 82 63 66

Maximum Hertzian 
Stress (GPa) 2 .39 2.08 2.13

M ateria l Specifications
Material A IS I 8620
Hardness U nknow n S ee  Table  10

Heat Treatment U nknow n S ee  Tab le  10
Roughness 16 to  20  m ic ro in ch

E d d y  Current Settings
Probe Distance 

(mm)
0 .483

Inspection 
Frequency (kHz)

1000

Line Speed 
(m/s) 2 .39

High Pass Filter 5
Low Pass Filter 7
Sensitivity (dB) 25

T E A C L X -10  Settings
Interval Time (sec) 29
Record Time (sec) 1

Data Collection 
Frequency (kHz) 12 48

The S-RCF tester conditions were chosen since similar testing on AISI 8620 was 

performed by Hoffman using the ZF-RCF tester [4]. The major difference between the 

S-RCF tester conditions and the ZF-RCF tester conditions is the amount of lubricant. 

The ZF-RCF tester applied a full EHL layer; whereas, the S-RCF tester applied a thin 

film layer. Consequently, the S-RCF specimens are expected to fail sooner than the ZF- 

RCF specimens.
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The failure criterion for a test is determined by the user and depends upon what 

type of testing is to be performed. In some cases, the user may want to run the tester until 

a small crack or flaw has formed. Other users may want to run the tester until a larger 

crack or flaw has occurred. Still others may want to run until catastrophic pitting or has 

occurred. In any case, understanding the output signal of the eddy current device requires 

specimens with pre-made, pre-sized flaws in them. These flawed specimens are spun at 

an equivalent speed and eddy current settings to determine what the signal output is for 

that size of flaw. After this has been determined, the maximum allowable change in 

voltage can be determined and set in the Matlab® program.

The flawed specimens can be spun in the eddy current calibration device (ECCD) 

that has been designed. The ECCD is capable of a maximum speed of 1755 RPM. The 

eddy current device can monitor the specimen using the old probe holder design. The 

ECC was designed to spin failed specimens from the ZF-RCF tester. Therefore, it is not 

currently setup to monitor specimens from the S-RCF tester. Different bearings, bearing 

mounts, shafts and a coupler would be needed to make the ECCD capable of spinning the 

S-RCF tester specimens. Figure 51 is a photograph of the current state of the ECCD.
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Figure 51 Eddy Current Calibration Device (ECCD)

For the sample specimen, no failure criterion was set. The machine was run until 

the eddy current signal reached a value believed to be failure. This value was then 

analyzed and damage on the specimen was examined visually. The criterion for all the 

other specimens was a voltage increase of 0.15 on any of the eddy current channels. This 

value was determined based on the results from the sample specimen.

After the voltage change occurred and the machine stopped, the specimens were 

taken out of the S-RCF and visually examined. A few specimens were taken to the SEM 

to take microscopic pictures of the damage. Also, the graphs developed during testing 

were examined and remade to condense the number of files. These graphs were then 

examined further with the T2Mv2Screening file. The screening file graphed the absolute 

values of the mean, minimum and maximum values for each file examined. After a point 

of interest is found, the raw data can be viewed using the T2Mv2Ana!ysis file.
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CHAPTER 4

RESULTS AND DISCUSSION

The preliminary test results are presented here along with a discussion of these 

results. The results include the verification of the properties of the specimens and rollers, 

the S-RCF tester’s performance and the fatigue results.

Verification of Part Specifications

The properties measured include the roughness, microstructure analysis and 

hardness value.

In the batch of AISI 8620 material, four of the rollers had small defects along the 

edge and one roller had a defect across the face. The roller with the defect across the face 

could not be used since it would contact the test surface. The marks on the edge were 

determined to be far enough away from the contact zone on the roller. These defects can 

be seen in Figure 52 and Figure 53.

Figure 52 Defects at the Edge of the Rollers

Figure 53 Defect Across the Face of the Roller
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The average roughness (Ra) was measured over a distance of 0.3 inches. Three 

randomly chosen specimens and a randomly chosen set of rollers (3) were measured. 

Each part was measured in four random locations in the axial and circumferential 

directions. The axial direction goes across the faces of the part (across the grinding 

marks) and the circumferential direction goes around the part (with the grinding marks). 

As expected, measuring in the axial direction on a part gave a higher value than in the 

circumferential direction. The Ra values of the rollers were consistently less than the 

values for the specimens. In Table 12, the data shows that Ra values of the individual 

parts and the sample group are all less than the maximum specified value of 20 p” (see 

Table 10) with 95% confidence.

fable 12 Roughness Measurements of Randomly Chosen Specimens and Rollers
-------- —

' S p e c im e n /R o lle r

N um b er
13 4 3 4A 4B 4C

i In
d

iv
id

u
a

l

A v e ra g e (p ” ) 15.28 13.65 13.46 11.35 7.08 9.39

9 5 %  C o n fid e n ce  

ln t e rv a l'(p " )
±  2.3G ± 1.81 ± 3.36 ±  0.62 ±  1.05 ±0.72

.5

\ r; ' 4

C- - ' r

A v e r a g e (p " ) 14,13 9.27

• v .... . •
9 5 %  C o n fid e n ce  

Interval ( p " )
2.48 5.31

T

3.:
•

-

A v e r a g e (p " )
'V J . •/ .. .' ' .. • .f

10.86 10.41 10.70 5,99 4.59 5.75

9 5 %  Confidence-  

Interval ( p " )
i  1.54

t.., .........1
± 2.43 ±  4.86 ±2,12 ± 0.56 ± 1.65

3
C•Jik •• \ A; 

:--------

A v e r a g e (p " ) 10.66 5.44

9 5 %  C o n fid e n ce  
In terval (p ?')

L---- ;------:----------------------

0.57 1.86
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A photograph of the testing surface of the specimen is shown in Figure 54. This 

photo was taken with the SEM microscope at UND at a magnification of 85. The marks 

on the surface are the grind marks from the manufacturer grinding the parts down to the 

specified roughness.

Figure 54 Specimen Testing Surface (Untested)

The microstructure analysis was performed by Dr. Ranko Todorovic of the 

Engineered Surface Center (ESC) and Damian Wilmot of Alion Science and Technology. 

The analysis was performed on the test bars that were heat treated the same but not 

polished or ground to a finish like the actual parts. Therefore, a decarburized layer is 

present on the test bars. The decarburized layer can be seen in Figure 55 and Figure 56. 

The depth of the decarburized layer is approximately 0.3mm. In a private 

communication with Damian Wilmot, it was determined that the manufacturer ground 

away this layer.
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See Figure 56

Figure 55 Decarburized Layer of AIS1 8620 Test Cylinder at a Magnification of 500

Figure 56 Decarburized Layer of A1S1 8620 Test Cylinder at. a Magnification of 1000

Several pictures of one of the test bars were taken to determine the microstructure 

at different depths away from the surface. Figure 57 shows the analysis taken 20 microns 

from the edge, which was the maximum value of all the spots analyzed. The amount of 

retained austenite and other non-transformed products in Figure 57 (shown in yellow) is 

15.13%. The maximum set forth in the specifications was 15%. Additional pictures are 

located in Appendix A: Supplemental Data from Tests in the Microstructure Pictures and 

Composition Analysis section.
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Segmentat ion for Image: I

Segment Description Area

HOT 1513

Figure 57 Microstructure Analysis 20 Microns from the Edge

Hardness measurements were taken incrementally every 15mm on one of the test 

bars. The first hardness measurement was taken at a distance of 15mm from the edge. 

Measurements stopped when the effective hardness value (50 HRC) was reached. The 

distance from this point to the edge was then measured. The data is shown in Figure 58.
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M e a s u re m e n ts  - ® — E ffe c tiv e  H ard ness

Figure 58 Hardness Measurements for Verifying the Case Depth

Since the test bars were not polished or finished, the de-carburized layer is still 

present. Therefore, the hardness measurements rise until the de-carburized layer is 

passed. Past this point, the hardness decreases due to decreasing strength of the heat 

treatment. The hardness measurements drop below the effective hardness at around 1.5 

mm. In both the microstructure pictures (Figure 55 and Figure 56) and Figure 58, the de- 

carburized layer is approximately 0.3mm deep. The case depth is then 1,2mm, which is 

within the range specified in Table 10.

All of the measurements taken indicated that the batch of AIS1 8620 material was 

within specifications. Therefore, preliminary testing on these parts could begin.

S-RCF Tester Performance

The sample specimen was the first specimen to be tested on the S-RCF tester. 

Testing was performed on February 5th 2008 until February 8th 2008. The total testing 

time was forty hours.
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The data storage and analysis systems performed adequately. The data taken was 

stored correctly by the LX-10 at the user specified interval (wait twenty-nine seconds 

then record for one second). At the time, Matlab® analyzed these files after the user 

defined time (five minutes) had passed. A problem developed since the LX-10 and 

Matlab® were not set to the same clock. Therefore, the LX-10 was gradually creating 

files later and later than it should have. Matlab® would reach the amount of time to wait 

and look for a file that was not created yet. This discrepancy would cause an error in 

Matlab® and force the R e a lT im e D a la A n a ly s is  file to stop. This problem was temporarily 

fixed by starting the R e a lT im e D a ta A n a ly s is  file twenty minutes behind the time the LX- 

10. Also, the automatic stop was not yet set up; therefore, the tester could not turn off the 

motors if a crack was detected.

The lubrication and pneumatic loading system both performed well. The leaking 

from the pneumatic loading system was very minimal. Some hissing was heard, but 

disappeared after the connections were tightened. Lubrication leaked out of the machine 

in several spots. After the lubricant was drained and filled back into the containers, 

approximately 1.5 quarts of lubricant leaked out or was still in the lines. The S-RCF 

tester originally had about 1 gallon of lubricant in the reservoir during testing.

After the sample specimen was remove and the bottom and top rollers taken off, 

the damage to the machine was assessed. All of the shafts had grooves on them from 

where they sat in the bearings. These grooves made removal of the rollers and collars 

difficult. The top roller shaft had developed a chip in it near the keyway. The damage to 

the top roller can be seen in Figure 59.
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Figure 59 Keyway Damage to the Top Roller Shaft

The old probe holder used reached inside the S-RCF tester to monitor the 

specimen surface. The idea was that this isolated the eddy current probe from the 

vibrations in the tester. However, vibrations from the tester and from surrounding 

machinery were causing more vibrations in the floor than previously thought. Therefore, 

a new probe holder was designed for the next test to help reduce this vibration problem. 

The new probe holder sets inside the machine and is attached to the specimen sliding 

walls. A picture of the old and new probe holder can be seen in Figure 60.
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Figure 60 S-RCF Tester Eddy Current Probe Holders: Old (left) and New (right)

The next specimen tested was specimen 11 on April 18th thru April 22nd. The 

total testing time was approximately ninety-six hours.

Like the sample specimen testing, this testing required that the file creation and 

analysis be offset by approximately twenty minutes to prevent Matlab® from stopping 

unexpectedly. Since testing took significantly longer than the sample specimen, the 

offset had to be monitored and reset if necessary. The automatic stop was setup in the 

RealTimeDataAnalysis file and was tested several times to ensure it worked correctly.

The lubrication and pneumatic systems performed in much the same way. The 

pneumatic system continued to leak minimally and the lubrication system lost about the 

same amount of lubricant as the sample specimen test. The lubrication system worked 

well except for the temperature probe. At several points during testing, the probe seemed 

to have turned off or lost power as it drops to zero for no apparent reason. After this 

problem was discovered, the power to the temperature probe was reset and the probe 

worked correctly. The cause of this loss of power is unknown.
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The new probe holder did well and no damage was done to the probe. The signal 

output from the probe was also much lower this time than the previous test. This can be 

seen by looking at the values of the graphs generated at the start of each test (graphs 

located in Appendix A: Supplemental Test Data in their respective section).

After testing was completed, the S-RCF tester was examined. There was no 

further evidence of wear on the top roller shaft and the shafts still had slight grooves in 

them. The PTFE tape used to seal the lubricant compartment was still holding in place 

and preventing lubricant from leaking. The oil seal in the specimen motor end oil wall 

had become wore and was tearing out of place.

Before specimen 2 was tested, several adjustments were made. First, under a 

higher loading, it appeared that the gear on the top roller was meshing too tightly with the 

gear on the roller motor. A new batch of top rollers was ordered with the diameter two 

millimeters larger than before. All other properties were kept the same. By only 

changing the diameter of the top roller, it now spins slightly faster than the other rollers. 

For a specimen speed of 1200 rpm and rolling conditions, the top roller surface velocity 

is 95.9 in./sec (2.44 m/s) whereas the bottom rollers surface velocities are 94.2 in./sec 

(2.39m/s). This difference is negligible when compared to the variability in the motors 

speeds during testing.

Secondly, it was determined that the motor mounts were to flexible and causing 

excessive noise and vibration. The metal adapter plate and motor mounts were removed 

and replace with two 10” channel irons. These channel irons provided a very solid and 

rigid base.
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Testing on specimen 2 began on June 17th 2008 and ran continuously for about 

29 hours. The new motor mounts installed reduced the noise and vibration considerably. 

The lubrication and pneumatic system performed the same as they did in the previous 

tests. The temperature probe turned off and on again several time for an undetermined 

reason.

After testing was completed, specimen 2 was removed so that specimen 3 could 

be run. The rollers were left on since specimen 3 was going to be used to test the ability 

to apply a slip ratio. With the tester back together, the motors were turned on with siip. 

Under loading, the roller motor would not turn on or ramp up to speed. The specimen 

motor tried to turn the whole system, but could only reach a speed of 400 RPM (it was set 

at 1200 RPM). If it was not under loading, the system worked fine and both motors 

turned up to speed. The S-RCF tester was taken apart and examined to determine the 

cause of the motor problem. After the bottom rollers were removed, it was discovered 

that a shaft had broken. Under loading, the gear on the broken shaft would bind the gear 

driving assembly. Due to the broken shaft, further testing could not be performed at the 

time. A picture of the broken bottom roller shaft can be seen in Figure 61.

Figure 61 Broken Bottom Roller Shaft
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After several modifications and additions during testing, the various systems of 

the S-RCF tester functioned adequately. These systems performed their tasks with a few 

minor problems that have been or can be fixed. These problems did not inhibit the ability 

of the tester to perform fatigue tests. The only major breakdown was the shaft on the 

bottom roller breaking. However, this failure was attributed to the fact that the shafts 

were made here at UND by a student and were not heat treated. New shafts are on order 

that will be precision machined and heat treated.

S-RCF Specimen Test Results

The graphs generated during the first stage of analysis (real time data analysis) for 

each specimen are located in Appendix A: Supplemental Test Data under the appropriate 

section. Table 13 presents the fatigue results of the AIS1 8620 S-RCF specimens. The 

results of each specimen are presented in further detail in their respective sections. Each 

fatigue test was performed with new rollers.

Table 13 AISI 8620 S-RCF Specimen Test Results

S p e c im e n
T e st

D a te s
F a ilu re

D e te cte d

E la p s e d
T im e
(h rs)

L o a d
C y c le s

A v e ra g e
C y lin d e r
P re s s u re

(p si)

M a x im u m  
H e rtzia n  S tre s s  

(G P a )

Sam ple '  Feb 5-8 Y e s 40 8.64E+06 83 2.39
11 'A p r 18-22 No 93 2.01E+07 63 2.08
2 \ ju n  17-18 Y e s 29 6.26E+06 66 2.13

Sample Specimen

The sample specimen was the first specimen tested in the S-RCF tester. This 

specimen was made from AISI 8620, but had an unknown heat treatment and its 

properties were not verified. The cylinder pressure was approximately 82 psi (2.39 GPa 

maximum Hertzian stress). Since the automatic shutoff for the Matlab® files was not set 

up correctly at the time, the tester continued to run and was manually stopped at 40 hours
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(8.64 million load cycles). Since the specimen was overrun, the exact time and location 

of the first signs of failure can only be determined by analyzing the data from the eddy 

current device. The specimen is hypothesized to have begun failure at approximately 

27.8 hours of testing. The total number of load cycles at this point is about 6 million.

Since testing was not run continuously, there are several files that have the same 

number. Therefore, the testing time at the top of each graph is not accurate. The 

appropriate time for the graph is located in the titles.

During the first 18 hours of testing, no significant eddy current voltage change 

was detected. After 18 hours, the voltages on the Y and V channels began to gradually 

rise. This rise indicates that an irregularity or flaw is present on or near the surface which 

is disrupting the eddy currents induced into the material. This section of data was 

analyzed using the screening Matlab program. Figure 62 and Figure 63 are the figures 

developed from the screening program.
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SRCF Specimen Sample: Channel 1
Start Time=589min End Time=1138
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Figure 62 Screening Figure 1 for Sample Specimen (Testing Time 18 - 27.8 hrs)
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SRCF Specimen Sample. Channel 1
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Figure 63 Screening Figure 1 for Sample Specimen (Testing Time 27.8 - 40 hrs)

In Figure 63, it can be seen that the signal levels off into a line. This is because 

the LX-Navi range was not calibrated correctly and the signal reached a maximum 

allowable value. Even with this data cut off, a significant voltage change was detected 

(see Table 14). Since the change went undetected, testing on the sample specimen was 

not stopped at the appropriate time.
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Table 14 Summary of Eddy Current Voltage Changes for Sample Specimen

Channel 0
hours

18
hours

27.8
hours

29.8
hours

Voltage Values 
(V)

Y 0.16 0 .175 0.31 0 .38
X 0.15 0 .174 0.22 0 .23
V 0.17 0.18 0.31 0.41

Voltage Change 
(mV/hr)

Channel Oto 0 
hours

0 to 18 
hours

18 to 27.8 
hours

27.9 to 29.8 
hours

Y 0.00 0.83 13.78 35.00
X 0 .00 1.33 4 .69 5,00
V 0.00 0.56 13.27 50.00

Severe pitting was found on the surface when the sample specimen was removed 

from the S-RCF tester. A photograph of the damage can be seen in Figure 64. A SEM

photograph of the damage at a magni fication of thirty-five is shown in Figure 65.

Figure 64 Pitting on S-RCF Sample Specimen

Figure 65 SEM 35x Photograph of the Sample Specimen

The SEM photograph shows that the damage is on the scale of millimeters. Since 

the specimen has not been cut. the origin of the pitting could not be determined.

However, since the specimen was tested in a thin EHL layer, most likely the damage is a 

point-surface origin pit, severe micropitting, or a combination of both.
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S p e c im e n  11

Specimen 11 was the second specimen tested, but was the first specimen tested 

from the batch of material ordered. Specimen 11 was used in place of specimen 1 since 

specimen 1 had a flaw on the surface which made it unusable. Testing was performed 

continuously from April 18th to April 22nd and suspended after 93 hours since failure 

was not detected. The specimen was loaded at a cylinder pressure of 63 psi (2.08 GPa 

maximum Hertzian stress).

Since no failure was detected, testing was stopped and the specimen was taken out 

and inspected. The test surface on the specimen showed s wear track on the surface; 

however, no crack or flaw could be seen. A photograph of the wear track on the test 

surface can be seen in Figure 66.

Figure166 :S-RCF Specimen 1 1 Test Surface Wear Track

The SE5M was used to examine the surface in finer detail. A comparison of an 

untested surface with the tested surface of specimen 11 can be seen in Figure 67. The 

.tested’isufface of specimen 11 appears cleaner and has fewer-bumps on it. The bumps on 

the.: untested surface are from the grinding process and were eroded off during testing. 

The few.nicks-and. scratches that can be seen on both surfaces are also from the grinding 

process. No further analysis of the data was performed.
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Figure 67 Comparison between an Untested S-RCF Specimen Test Surface (left) and the 
Tested Test Surface of Specimen (right)

S p e c im e n  2

Specimen 2 was the second specimen tested from the batch of material ordered. 

The specimen was loaded at a cylinder pressure of 66 psi (2.13 GPa maximum Hertzian 

stress). Testing was performed continuously from June 17th to June 18th. On June 18th, 

one of the eddy current channels observed a signal outside of the allowable range. The 

motors were turned off automatically, but the applied loading and file creation continued 

to operate. Figure 68 shows the graphs for specimen 2 generated during stage 2 

(screening stage) from the start to 33 hours into testing.
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From Figure 68, it can be seen that channels 1,2 and 3 (the Y, X and Vector eddy 

current signals, respectively) experienced a sharp rise in voltages at several points. The 

reason for these sharp rises in voltage was not determined until the tester was taken apart. 

As previously mentioned, one of the bottom roller shafts was found to be broken. The 

peaks in voltages were probably the bottom shaft moving out of position. The largest 

peak on the second channel was the reason the motors turned off. This occurred after 

approximately 29 hours of testing (6.26 million load cycles).

Specimen 2 was removed from the S-RCF tester and examined for signs of wear 

and damage. Tiny pits had begun forming on only one edge of the testing surface. Since 

the damage is only on one side of the test surface, it is possible that a misalignment is 

present in the system. Also, the area around the testing surface had a darker coloring to it 

than the rest of the metal. The discoloring did not occur on the pre\ ious specimens. A 

picture of specimen 2 can be seen in Figure 69.

Figure 69 S-RCF Specimen 2 Photograph of Tested Surface

The specimen was then put into the SEM to obtain a closer look at the damage. 

After trying for several hours with Dr. Ranko, the SEM would no; give a clear image of 

the surface. The specimen was then taken to an optical microscope with photographing

1 0 3
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capabilities in the ESC. The microscope showed small pits at one edge of the test 

surface. The damaged edge is 1.21 millimeters wide and the largest pit is almost V2 a 

millimeter wide. The optical microscope photograph can be seen in Figure 70.

Undamaged 
Test Surface

Damaged Test Surface 
1.21 mm

0.454 mm

Test Surface Edge

Figure 70 S-RCF Specimen 2 Optical Microscope Photograph Tested Surface

The damage on one side of the test surface and not the other suggests that the 

loading across the test surface is not equal. The cause for this unequal loading is 

probably due to the poor machining of the shafts and the collars. The three rollers are not 

perfectly inline; therefore, a slight bending moment is occurring at the specimen. This 

bending would cause the pressure distribution to be uneven at higher loadings. Thus, one 

side of the surface is under higher pressure than the others. The uneven loading is also 

present on the sample specimen since one side is damaged more than the other (see 

Figure 64). However, since the sample specimen was overrun, damage had begun to 

form on both sides.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS 

Many different testers for sliding and/or rolling contact fatigue exist in the 

industry. Each tester is used for a specific application and has different limitations. The 

S-RCF tester was designed to be a fatigue tester that could perform contact fatigue tests 

under a wide range of conditions. These different conditions can be controlled and 

monitored by the tester. A method for determining the relevant properties of the material 

was also developed. The analysis program created gives the user a way to determine 

when failure has started and if it is growing. The only condition not functioning correctly 

is. the, ability to apply a slip ratio. This problem is a controller issue and will need to be 

addressed in the future. Although the limits of the tester’s capability were not performed, 

the basic systems of the machine were tested and function properly.

The^pneumatie systemappliedToading with some small scale variability (about 3
, /; T o ' T T 'T
psi). This variability is:due.4o small leaking and the cylinders having to be recharged.

jp. / i f i V * ; - -r’ ;‘V
The lubrication system lost lubricant during testing but did'not affect the tester’s ability.

• Vv * ■ ■ ■ *  "■. - V  V .; - v

The reason for leaking, is due to poor machining of the oil walls. Submerged testing can 

not be. performed due to a broken, oil seal in one of the end oil-walls. The eddy-current

detection device worked well during all of the tests, failure was detected on the first test
... ,

(sample specimen) and removing the.specimen showed pitting had occurred. The second
•• A *  v .  * ,  M
tesffspecimen 1 I ) did not show any signs of failure and no significant voltage change

w as found. The Matlab® scripts that have been developed and revised give the user a
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way to analyze the data. This data can be analyzed both during testing and after testing. 

The broken shaft was probably due to a roller misalignment due to poor machining of the 

collars and shafts. Precision machined and hardened shafts and collars should fix this 

problem.

After performing tests and working with the S-RCF tester, several improvements 

and ideas have been developed. These suggestions could either be used on the current 

tester or on a second generation version of the tester. It is recommended that work on the 

current tester be continued until it is fully determined that the concepts behind it will 

work.

The first set of improvements concern the pneumatic loading system of the S-RCF 

tester. Originally, the loading structure was to be removable so that the user could access 

the specimen and rollers easily. However, the frame warped when it was welded and 

now the frame catches on the bolt heads. A quick solution for this is to use hex bolts in 

place of the socket head cap screws (SHCS) currently in use. The hex bolt heads have a 

lower profile and will allow the loading frame to be removed.

The application of the loading is performed manually by flipping a three-position 

four-way control valve. Therefore, when failure is detected and the motors stop turning, 

the load is still being applied. It is recommended that the loading be controlled by the 

computer as well as manually. The manual switch would act as a safety measure if 

something were to go wrong. The computer controlled method would allow Matlab® to 

automatically remove the loading when failure has been detected.

The lubrication system has several improvements that would make it function 

better. The lubricant leaking that occurred during this test did not hinder or affect the
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tests; however, it did make quite a mess. The leaking problem is due to the poor 

machining of the end oil walls and a slight dip in the center of the base. These machining 

problems would be best corrected by designing a new machine. The leaking problem 

could also be solved by drilling large holes in the base to allow the lubricant to store in a 

separate reservoir. This separate reservoir would also allow the user to determine the 

amount of lubricant in the system and if more needs to be added. Lubricant was added to 

the S-RCF tester by removing the top cover and pouring it into the top. A separate 

reservoir would make adding lubricant easier and safer.

An explanation for the temperature probe turning off and on at random could not 

be found. It is possible that the power supply is overheating or that the bare wires are 

touching. In either case, the temperature probe needs to be fixed or replaced. The probe 

should also be moved closer to the specimen to get a more accurate reading. The current 

location of the temperature probe measures the bulk lubricant temperature after the 

lubricant has been sitting inside the tester for while. The temperature of interest in 

fatigue testing is the temperature of the contacting surfaces. Deng, Nakanishi and Kato 

used a type K thermocouple which hovered just above the surface to measure the surface 

temperature [7]. The thermocouple would measure the temperature of the lubricant film 

on the contacting surface. Although this is not the actual surface temperature, it is a 

closer approximation than the method currently used.

Another area of improvement is the user controls of the S-RCF tester. The tester 

is currently controlled by Matlab® and requires some skill in programming if changes are 

to be made. Labview® (a more graphical programming language) was tried but it did not 

function correctly. It is recommended that a combination of both the programs be used
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together. Labview® has the capability of calling up and running a Matlab® script. The 

user defined inputs could then be on a Labview® control board. The user could then start 

the Labview® program and it would automatically run the Matlab® scripts.

Although significant work and several modifications have been made to the 

Matlab® scripts, there is still a lot that could be done. If the loading was computer 

controlled, then the user could generate a load history script to vary the loading during 

testing. The slip could be varied during testing as well once it is possible to perform slip.

The graphs generated during the real time data analysis stage (stage 1) display a 

small window of time. While this shows when a failure occurs, it does not show the long 

term trend of the data. Since Matlab® is limi ted on the amount of information it can 

process, graphing all of the data is not a feasible solution. A solution for this problem is 

to remove old data from the memory and replace it with the new data. The data matrix 

with all of the information can be manipulated so that the first column of data is deleted 

and the new data is concatenated to the end of the data matrix. Preliminary trials in 

Matlab® show promise that this method will work.

The final set of improvements concern the procedure for the assembly and 

disassembly of the S-RCF tester. Currently, the user must manually lift out the top roller 

to gain access to the specimen. Even after performing this task several times alone, it is 

not easy to do. Since the top roller must be removed after every test performed, it should 

be made easier to do. This can be accomplished by designing a connection between the 

air cylinder rods and the top roller assembly. With this connection, the air cylinders can 

lift the top roller out of the inner walls.
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Another task that must be performed after every test is the changing of the bottom 

rollers. This task is complicated due to the fact that both motors must be disengaged and 

moved and both end oil walls must be unbolted. A couple of improvements could be 

made to make this task easier. First, the motors could be placed on a linear motion 

system than lock into place. Secondly, the bottom rollers could be made to slide out like 

the top roller. Therefore, the rollers could be changed outside the machine like the top 

roller.

Most of these improvements would serve best on a second generation S-RCF 

tester. It is recommended that testing continue on the current S-RCF tester to test all of 

its capabilities. If it is determined that all the systems of the tester can function properly 

together, a second generation tester with improvements should be designed and built.

In comparison to other testers available, the S-RCF tester does not currently 

function as well as them. The biggest shortcoming of the S-RCF tester is that it cannot 

perform a contact fatigue test under a full EFIL condition. However, the other testers 

have been around for several years and worked on longer. The potential capabilities of 

the S-RCF tester is the same or better than most tester available. The most promising 

potential is the ability to run at any slip ratio. Other potential capabilities include a 

dynamic load history, surface temperature monitoring and lubricant temperature control.
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A P P E N D I X  A

Supplemental I est Data
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Mil'I'o,structure Pictures and Composition Analysis

Image Distance: 100 Microns from the edge
Segmentation for image: I

Segment Description Area
12.10
8 7 .9 0

Retained Austenite and Other Non-Transformed Products: 12.10 % (Volume)
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I m a g e  D i s t a n c e :  2 0 0  M i c r o n s  f r o m  t h e  E d g e

Segmentation for Image: I

Retained Austenite and Other Non-Transformed Products: 7.64 %  (Volume)
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Retained Austenite and Other Non-Transformed Products: 15.59% (Volume)
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Camp arum Cone.

Si 0 j683 wt.%
Cr 0.447 wt.%
M r 0.403 wt.%
Ft 96605 wt.y*
N i 1508 wt.%
Cu 0653 wt.%

100800 wt.y* TatAl

Eh.. L in t Intensity Error Atomic Atomic Carre
(c/s) 2-sig % Ratio

Si Ka 5 5 0 1048 1351 18000 o c* CO w w t.%
Cr Ka 3 8 1 0J873 0.478 03536 0.447 wt.%
M r Ka 1.76 0593 0.408 03018 0.403 wt.%
Ft K a 311.71 7895 96J050 71.1126 96605 wt.%
N i Ka 237 0688 1.143 08464

00orH wt.y*
Cu Ka 055 0.435 0570 0.4224 0653 •wt.%

100J000 100800 wt.% Total

IcV 15 JO
lisktaffAngl* 35 £i*
ElapstdLhrttim t 20 JO
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E l e m e n t a l  C o m p o s i t i o n  A r e a  2

Component Cone.

Si 0639 wt.%
Cr 0.751 wt.%
M il 0.794 wt.%
Fe 96.178 wt.%
N i 0967 wt.%
Cu 0670 wt.%

100900 wt.% Total

EH. Line Mens i t / Error Atomic Atomic Cone
(c/s) 2-sig % Ratio

Si Ka 1033 1.437 1364 19000 0639 wt.%
Cr Ka 12.09 1555 0802 06349 0.751 wt.%
Met Ka 683 1.169 0802 06349 0.794 wt.y*
Fe Ka 623.14 11.163 95631 756695 96.178 wt.%
H i Ka 381 0872 0915 0.7242 0967 wt.%
Cu Ka 195 0.625 0586 0.4635 O iZh --

i o wt.V*
100.000 100900 w t.v*

kV 159
TaReoff Angle 359* 
Elapsed L nr etime 20.0

I 16



www.manaraa.com

S a m p le  S p e c im e n

For the sample specimen, channels 1,2 and 3 were the eddy current channels. 

Channel 1 was the Y-component, channel 2 was the X component and channel 3 was the

V (vector) component. Channel 4 was the pressure as measured by the pressure 

transducer. Eight hours of testing occurred before these graphs were generated;

therefore, the time at the top of the graph needs to have nine hours added to it to achieve

the testing time.
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The low values at the/start-of the graphs for channels 1.2 and 3 are because the

motors w,ere not turned on yet.
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The drop off in channels l, 2 and 3 are because the eddy current device was 

accidentally shut off.
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Testing Time at End=955min

Max Values 
Min Values 
Initial Value
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0.1475

0.0991

0.0507

00022

SRCF Specimen Sample Max Values from Channel 2 
Testing Time at End=955min

560 580 600 620 640 660 680 700 720

Max Values 
Min Values 
Initial Value

SRCF Specimen Sample Max Values from Channel 3 
Testing Time at End=955min

2a)OT
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0.3222

0.2579

0.1936

0.1293

0.065

0.0007

Max Values 
Min Values 
Initial Value

SRCF Specimen Sample Max Values from Channel 4 
Testing Time at End=955min

File Number

Max Values 
Min Values 
Initial Value

Testing Time: 23.25hr to 24.76hr

In channel 1, the signal has started to increase significantly from the initial value.

1 2 5
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SRCF Specimen Sample Max Values from Channel 1

740 760 780 800 820 840 860 880 900

Max Values 
Min Values 
Initial Value

sa*
CD
CO

"5>

0.2473
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0.1003

00513

00023

SRCF Specimen Sample Max Values from Channel 2 
Testing Time at End=1046.5min

740 760 780 800 820 840 860 880 900

Max Values 
Min Values 
Initial Value

0.3702

SRCF Specimen Sample Max Values from Channel 3 
Testing Time at End=1046.5min

0.2963 H — .-i-rl 
0.2224

~  0 1484O
>  0.0745 

0.0006
740 760 780 800 820 840 860 880 900

Max Values 
Min Values 
Initial Value

SRCF Specimen Sample Max Values from Channel 4 
Testing Time at End=1046.5min

File Number

Max Values 
Min Values 
Initial Value

Testing Time: 24.76hr to 26.3hr

In channel 1, the jump in the voltage at file 815 signals that an irregularity in the 

surface has formed. This can also be seen in the graph of channel 3.
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SRCF Specimen Sample Max Values from Channel 1
Testing Time at End=1138min

Max Values 
Min Values 
Initial Value

SRCF Specimen Sample Max Values from Channel 2
Testing Time at End=1138min

Max Values 
Min Values 
Initial Value

0.3757 

0.3008 

0 2258 

0.1508 

0.0759 L 

0.0009

SRCF Specimen Sample Max Values from Channal 3 
Testing Time at End=1138min

920 940 960 980 1000 1020 1040 1060 1080

Max Values 
Min Values 
Initial Value

SRCF Specimen Sample Max Values from Channel 4

920 940 960 980 1000 1020 1040 1060 1080 
File Number

Max Values 
Min Values 
Initial Value

T e s t i n g  T i m e :  2 6 . 3 h r  t o  2 7 . 8 2 5 h r

1 2 7
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SRCF Specimen Sample ax Values from Channel 1
Testing Time at End=1230min

Max Values 
Min Values 
Initial Value

SRCF Specimen Sample Max Values from Channel 2 
Testing Time at End=1230min

0.2574 

0.2064 

*  0.1553 

E 0.1043O
>  0.0533 

0.0023
20 40 60 80 100 120 140 160 180

Max Values 
Min Values 
Initial Value

SRCF Specimen Sample Max Values from Channel 3 
Testing Time at End=1230min

0.4325 

0.3461 

„  0.259713)
~  0.1734O
>  0.087

0.0007

Max Values 
Min Values 
Initial Value

SRCF Specimen Sample Max Values from Channel 4

File Number

Max Values 
Min Values 
Initial Value

T e s t i n g  T i m e :  2 7 . 8 2 5  h r  t o  2 9 . 3 5  h r

1 2 8
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SRCF Specimen Sample Max Values from Channel 1 
Testing Time at End=1322min
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200 220 240 260 280 300 320 340 360

Max Values 
Min Values 
Initial Value

SRCF Specimen Sample Max Values from Channel 2
Testing Time at End=1322min

Max Values 
Min Values 
Initial Value

SRCF Specimen Sample Max Values from Channel 3 
Testing Time at End=1322min

0.4556 

0.3646
2
„  0.2736 

E  0.1827O
>  0.0917 

0.0007
200 220 240 260 280 300 320 340 360

Max Values 
Min Values 
Initial Value

SRCF Specimen Sample Max Values from Channel 4 
Testing Time at End=1322min

Max Values 
Min Values 
Initial Value

T e s t i n g  T i m e :  2 9 . 3 5  h r  t o  3 0 . 8 7 5  h r

1 2 9
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SRCF Specimen Sample Max Values from Channel 1
Testing Time at End=1414min

sO)o>0!
"5>

0 .4 5 5 6  

0 .3 6 4 7  

0 .2 7 3 8  

0  183 

0 .0921 

0.0012
3 8 0  40 0  42 0  4 4 0  4 6 0  4 8 0  5 0 0  5 2 0  54 0

- -r  -

M a x  V a lu e s  

M in  V a lu e s  

in it ia l V a lu e

S R C F  S p e c im e n  S a m p le  M a x  V a lu e s  fro m  C han ne l 2
T e s tin g  T im e  at E n d = 1 4 1 4 m in

M a x  V a lu e s  

M in  V a lu e s  

In itia l V a lu e

0 .4 5 5 6  

0 .3 6 4 7  

f  0 .2 7 3 8  

5  0 .1 8 2 9O
>  0 .0 9 1 9  

0.001

S R C F  S p e c im e n  S a m p le  M a x  V a lu e s  fro m  C han ne l 3 
T e s tin g  T im e  at E n d = 1 4 1 4 m in

«/uL.
38 0  400 42 0  44 0  4 6 0  48 0  5 0 0  5 2 0  54 0

M a x  V a lu e s  

M in  V a lu e s  

In itia l V a lu e

S R C F  S p e c im e n  S a m p le  M a x  V a lu e s  fro m  C han ne l 4 
T e s tin g  T im e  at E n d = 1 4 1 4 m in

9 4 .600 4  

<=• 89 .9 3 6 9
CO

85 .3 7 3 4  

|  80 .7 5 9 9  

a. 7 6 .146 4  

71 .5 3 2 9
3 8 0  40 0  42 0  44 0  4 6 0  4 8 0  50 0  52 0  540

F ile  N u m b e r

M a x  V a lu e s  

M in  V a lu e s  

In itia l V a lu e

Testing Time: 30.875 hr to 32.4 hr

The values for channel 1 and channel 3 peak and flatten out because the LX-10 

was auto-calibrated instead of manually. Therefore, it was calibrated for the initial values 

and not what the potential future values could be.

1 3 0
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SRCF Specimen Sample Max Values from Channel 1

560 580 600 620 640 660 68C 700 720

Max Values 
Min Values 
Initial Value
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0.2824 

0 2264 

0 1703 

0.1143 

0.0583 

0.0022

SRCF Specimen Sample Max Values from Channel 2 
Testing Time at End=1506min

560 580 600 620 640 660 680 700 720

Max Values 
Min Values 
Initial Value

sO)
CO
03
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04556
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0.2737

0.1827

0.0917

00008

SRCF Specimen Sample Max Values from Channel 3 
Testing Time at End=1506min

T y . . r :
v i ■

f*»rW
560 580 600 620 640 660 680 700 720

Max Values 
Min Values 
Initial Value

SRCF Specimen Sample Max Values from Channel 4

File Number

Max Values 
Min Values 
Initial Value

T e s t i n g  T i m e :  3 2 . 4  h r  t o  3 3 . 9  h r
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SRCF Specimen Sample Max Values from Channel 1
Testing Time at End=1598min

Max Values 
Min Values 
Initial Value

SRCF Specimen Sample Max Values from Channel 2 
Testing Time at End=1598min

Max Values 
Min Values 
Initial Value

0 4556

CD w  w w

I *  0.1826O
>  0.0916

0.0006

SRCF Specimen Sample Max Values from Channel 3 
Testing Time at End=1598min

"

-

740 760 780 800 820 840 860 880 900 920

Max Values 
Min Values 
Initial Value

SRCF Specimen Sample Max Values from Channel 4

Max Values 
Min Values 
Initial Value

File Number

T e s t i n g  T i m e :  3 3 . 9  h r  t o  3 5 . 4 5  h r

1 3 2
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SRCF Specimen Sample Max Values from Channel 1
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SRCF Specimen Sample Max Values from Channel 2 
Testing Time at End=1690min
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950 1000 1050 1100

Max Values 
Min Values 
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SRCF Specimen Sample Max Values from Channel 3 
Testing Time at End=1690min

0.4556 

0.3646 

t r  0.2735 
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O
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-

—

950 1000 1050 1100

Max Values 
Min Values 
Initial Value

SRCF Specimen Sample Max Values from Channel 4

File Number

Max Values 
Min Values 
Initial Value

T e s t i n g  T i m e :  3 5 . 4 5  h r  t o  3 7  h r
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SRCF Specimen Sample Max Values from Channel 1

Max Values 
Min Values 
Initial Value

0.3309

0.2651

0.1994

0.1337

0.068

0.0023

SRCF Specimen Sample Max Values from Channel 2 
Testing Time at End=1782min

1120 1140 1160 1180 1200 1220 1240 1260 1280

Max Values 
Min Values 
Initial Value

SRCF Specimen Sample Max Values from Channel 3 
Testing Time at End=1782min

0.4556 

0.3646 

0.2736 

0.1826 

0.0916 

0.0006
1120 1140 1160 1180 1200 1220 1240 1260 1280

1

- -

1
1
1
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•
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1

1
1

Max Values 
Min Values 
Initial Value

SRCF Specimen Sample Max Values from Channel 4

File Number

Max Values 
Min Values 
Initial Value

T e s t i n g  T i m e :  3 7  h r  t o  3 8 . 5  h r

1 3 4
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SRCF Specimen Sample Max Values from Channel 1

1300 1320 1340 1360 1380 1400 1420 1440 1460

Max Values 
Min Values 
Initial Value

SRCF Specimen Sample Max Values from Channel 2 
Testing Time at End=1874min
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Min Values 
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89 9711
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a.  76.1836

50 1380 1400 1420 1440 1460 
File* Number

Testing -rime: 38.5 hr to 40 Hr

• Max Values
• Min Values
■ Initial Value-

Channel 2 begins to increase significantly and eventually peaks and flattens like
If s'T "TT V:channels ! a ftd 3 due to the calibration error.
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Specimen 11

Specimen Motor 
Speed (PPM) Oil Temperature(6

S «  3 S y

Cylinder Pressure 
(PS')

IB 8  S 2 8  iin in r*. uji <£; N:> <.'OV 7>l ^

The channel 6 rises significantly since the temperature of the lubricant has not 

reached equilibrium yet. It is unclear why channel 4 is curving at the beginning of the 

test. It also appears that both motors are running slightly faster than expected (Channel 7 

Mii l >)0 RPM and Channel 8 should be 400 RPM). Also, the initial value for the

pressure is siig
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0 0172

SRCF Specimen 11: Channel 1
Start Time -  360min End Time = 720min

900 1000 1100 1200 1300 1400

Max Values 
Initial Value

SRCF Specimen 11: Channel 2 
Start Time = 360min End Time =  720mio

SRCF Specimen I t :  Channel 3 
Start Time =  360min End Time =  720min

00149

00121

00114

SRCF Specimen 11: Channel 4 
Start Time = 360min End Time =  720min

1000 1100 1200 1300 14QO
File Number

Max Values 
Initial Value

SRCF Specimen 11: Channel 5 
Start Time = SSGmin End Time = 720min

SRCF Specimen 1t: Channel 6 
Start Time =  300min End Time -  720min

Max Values 
Min Values 
Initial Value

800 900. 1000 1100 1.200 1300 140G

SRCF Specimen 11: Channel 7 
Start Time =  360min End Time = 720min

1281,2703

1244.7744

1195.2887 

1178.7908

**— 1— Max Values 
•••■—  Mitt Values 
--------- Initial Value

SRCF Specimen 11: Channel 8 
Star! Time = 360min End Time = 72Qmin

440.4029

420.301

413.6003

406.8997

File Number

■ Max Values
■ Min Values 
•Initia l Value
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The drop in signal in channel 6 at approximately file 2325 (created April 19th 

2008 at 11:07 am) is because oil at room temperature was added to the system to replace

lost oil due to minor leaking.
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SRCF Specimen 11 Channel 5
Start Time = 1440min End Time = 180Gmin
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It is unclear as to why the signal on channel 6 dropped so dramatically. File 

4600 was created on April 20th 2008 at about 6:49 am.
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SRCF Specimen 11 Channel 1
Start Time = 3600min End Time = 3960rain
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At the start of file I, the temperature probe was reset by unplugging it then

plugging it back into the outlet. This seemed to reset the probe and it began to work

correctly again.
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Voltage (V) Voltage (V) Voltage (V) Voltage (V)

Roller Motor 
Speed (RPM)

Testing was suspended on April 22nd 2008 at about 4:00 pm. However, it would 

appear that channel I was beginning to show signs of a surface irregularity since the 

signal began increasing steadily.
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SRCF Specimen 2 Channel 1 SRCF Specimen 2: Channel 5
Start Time = 800mm End Time = 1200mm Start Time = 800mm End Time = 1200min

SRCF Specimen 2 Channel 2 
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SRCF Specimen 2: Channel 1 
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SRCF Specimen 2: Channel 1 
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A P P E N D I X  B

Mathcad® Files

Mathcad® File for Converting Flertzian Stress to a Cylindrical Pressure

F ixe d  M a ch in e  V a lu e s

Radius o f Specimen: 

A ir Cylinder Diameter:

Contact Length:

rs := .75in 

dc := 4.5in

L := 5mm

A ir Cylinder Area:

Radius o f Roller:

Roller to W all Distance:

Shaft D iameters:

AA „  := n------

rr : rs

I^,aii:=2-5in

dshaft := ’ ~ in

GPa:= 109Pa MPa := I06Pa kN :=  t03N ksi := 103psi

M aterial P ro p e rtie s (T aken  ft ora C E 3  2007)

Ec := 2 1 0 1,Pa v -=.29

K_ :=
1 - v .

7I-E„
K„ = 1.458x 10 3 1

GPa

Ej. := 2-10 Pa 

2
1 -  v „

Kr:=-
ji-Ej.

v r := .29

K = 1.458 x 10
-  3 1

GPa

F o rc e  to M axim um  H ertzian P re s s u re :  

Input: Pressure in cylinders: pc := 66psi

C a lc u la tio n s:

Force Applied:

Corrected radius:

papp • 2' ^ c 'pc

W idth o f Band o f Contact:

R :=
rs rr

Fan_ = 9.338kN F„_n = 2.099x I f f ' ib fapp app

R =  14.287mm R = 0.563in
rs + rr

B :=
*̂ d app'(^s + ^r)P

B =  1.116mm B = 0.044in

Max Hertzian Stress
4 F

pHz •
app

L-rcB
PHz = 2.131 GPa PHz = 309.14 lksi

Mean Hertzian Stress: PHz.meam= ~ pHz pH z .m ean= '-674GPa pHz.mean= 242799ksi

M axim um  Hertzian Shear Stress: xm„ v := .29 5P o 7 xm„ Y= 628.778MPa xmav= 91.197ksi

Depth o f Max Shear Stress: z :=  .393B z = 0.438mm z =  0.0 D in

1 5 7
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Expected Testing Time: rpm := ——
min

Input: Cycles for Failure: Cfail = 8 1°6

Speed of Tester: cos := ! 20frpm

Fixed Machine Values:

Loading Points: Lp := 3

C a lc u la tio n s :

M a t h c a d ®  F i l e  f o r  E x p e c t e d  T e s t i n g  T i i n e

Loads Per Hour: LPH:=cos Lp L P H  =  2 .1 6 x  IQ3 —  
hr

Expected Failure Time: C fail
E F T  : = --------

L P H
E F T  =  37.037hr 

E F T  =  1,543day
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M a t h c a d ®  F i l e  f o r  D a t a  E d d y  C u r r e n t  S e t t i n g s

E d d y  C u rre n t S ettin gs:

M aterial P ro p e rtie s:

M agnetic Perm eability o f Air:

E lectrical R esistivity o f Material: 

E le ctica l C o n d u ctiv ity : c M aterial
I

g A i r := 1.25610 NDT W ebsite

Relative M agnetic Perm eability o f M aterial: ^M ateria l

P M aterial

4 0 0 1 0

7:= 3 -1 0  ohm-m C ES

P M aterial ^ M ate ria l =  3 -333x 10
.6 S

m

Lim it F re q u e n cy : f l im it: f ,im it=  2 61 .8 8k H z
ry ^
~ 'TC' rs P A ir 'P M a te ria r^ M a te ria l

t

D epth  o f P e ne tra tio n :

(  1 ^
3

10
30 

100 
300  

1000 
^ 3 0 0 0 )

available • kHz

Assum ing a P lanar Surface 8 is the d epth at w hich eddy current
density is reduced by 1/e=36.8%

i := 0.. 7

“available. •
avaia v a ila b le /P A ir 'P M a te r ia rCTM aterial

“available

"435.974'' "17.164^

251.71 9.91

137.867 5.428

79.598 3.134

43.597 m m  ^ a va ilab le = 1.716

25.171 0.991

13.787 0.543

,  7 .96 , \  0 -3 1 3 ;

Lin e  S p e e d : w s =  2 0 H z

Line S p e e d : LS:=co„-2r„-7c L S =  2 .3 9 4 -  L S =  7 .8 5 4 -
s s

Use Chart on Page 26 o f D efetom at EZ 2.828 O perating Instructions to set HP and LP.
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M a t h c a d ®  F i l e  f o r  D a t a  F r e q u e n c y  C o l l e c t i o n  C a l c u l a t i o n

Frequency o f Data:

in cu t: Size of defect to detect: Wj := ,5mm

C alcu la tions:

Circumference: Cs -= ^ 'nrs

C s
Scans per Revolution: S := -----

wd
S =

Frequency of Measurements: Fm := S ws-2 Fm

239.389 

= 9.576kHz

1 6 0
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M a t l a b ®  F i l e s

Matiab® Teac2Matlab File 

function
[x,dt,date,time]=:Teac2Matlab(mins_offset,secs_offset,secs_to_read,fname,EndFile);
clc
close all
%cd c:\matlab\GX-l\ % DADISP_GX.M 
% Copy of the File TAFFmat_gx,m sent by Steve Astulfi 
% Additions by C.S. Hayek, JHU/APL, 10/16/02 
% This is the working copy to install improvements

% Input variables:
% Scalars-
%  mins_offset - the number of minutes to skip before starting to read the data 
% secs_offset - the number of seconds to skip before starting to read the data
% secs_to_read the number of seconds of data to read

% Output variables:
%  Matrices-
% dt - time sequence of data for all channels, in original engineering units 
% Vectors - 
% x - time, in seconds

%[fname, pname] = uigetfile('C:\DATA\Spring2008\ESC\TeacMatlab\*.hdr'); 
%addpath(pname);
% fid = fopen(fname, 'r');
% fid = fopen(fname, 'r'); 
fileExist=0; 
while fileExist==0; 

try
fileExist=l; 
fid =* fopen(fname, V); 
fseek(fid, 0, 1); 

catch
fileExisfO; 
if EndFile>=l 5000;

fileExist=l;
end

end
end
% fseek(fid, 0, 1); 
fsize = ftell(fid); 
fseek(fid, 0,-1);
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[F,count] = fread(fid, [1,fsize], 'char'); 
s = setstr(F);

fclose(fid);

p = findstr(s, 'DATASET'); 
for q = p : fsize 

if F(q) ~= 13 
else 

break 
end 

end
dataset = s(p + 8: q - 1);

p = findstr(s, 'VERSION'); 
for q = p : fsize 

if F(q) ~= 13 
else 

break 
end 

end
version = s(p + 8: q - 1);

p = findstr(s, 'SERIES'); 
for q = p : fsize

if F(q) ~= 13 
else 

break 
end 

end
series = s(p + 7: q - 1);

p = findstr(s, 'DATE'); 
for q = p : fsize 

if F(q) ~= 13 
else 

break 
end 

end
date = s(p + 5: q - 1);

p = findstr(s, 'TIME'); 
for q = p : fsize 

if F(q) ~= 13

% f p r i n t f ( ' R e a d i n g  h e a d e r  i n f o . .A n ' )

1 6 2
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else
break

end
end
time = s(p + 5: q - 1);

p = findstr(s, 'RATE'); 
for q = p : fsize 

if F(q) ~= 13 
else 

break 
end 

end
rate = s(p + 5: q - 1);

p = findstr(s, 'VERT_UNITS'); 
for q = p : fsize 

if F(q) ~= 13 
else 

break 
end 

end
vert_units = s(p + 1 1: q - 1);

p = findstr(s, 'HORZ_UNITS'); 
for q = p : fsize 

if F(q) ~= 13 
else 

break 
end 

end
horz units -  s(p + 11: q - 1);

p = findstr(s, ’NUM_SER1ES'); 
for q = p : fsize 

if F(q) ~= 13 
else 

break 
end 

end
num_series = s(p + 11: q - 1);

p -  findstr(s, 'STORAGE MOD'); 
for q = p : fsize 

if F(q) ~= 13 
else

1 6 3
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break
end

end
storage_mod = s(p + 12: q - 1);

p = findstr(s, 'NUM_SAMPS'); 
for q = p : fsize 

if F(q) ~= 13 
else 

break 
end 

end
num_samps = s(p + 10: q - 1);

p = findstr(s, 'FILE TYPE'); 
for q = p : fsize 

if F(q) ~= 13 
else 

break 
end 

end
file^ype = s(p + 10: q - 1);

p = findstr(s, 'SLOPE'); 
for q = p : fsize 

if F(q) ~= 13 
else 

break 
end 

end
y_slope = s(p + 6: q - 1);

p = findstr(s, 'X_OFFSET’); 
for q = p : fsize 

if F(q) ~= 13 
else 

break 
end 

end
x_offset = s(p + 9: q - 1);

p = findstr(s, ’YOFFSET'); 
for q = p : fsize 

if F(q) ~= 13 
else 

break

1 6 4
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end
end
y offset = s(p + 9: q - 1);

% disassemble series 
nch = str2num(num_series);
P= 1;
q = findstr(series, 
for 1 = 1 : nch - 1

label(I) = cellstr(series(p : q(I) - 1)); 
p = q(l)+ 1; 

end
sz = size(series);
label(nch) = cellstr(series(p : sz(2)));

% disassemble unit
p=  i;
q = findstr(vert_units, 
for 1 = 1 : nch - 1

y_unit(l) = cellstr(vert_units(p : q(I) - 1)); 
p = q(I)+ 1; 

end
sz = size(vert_units);
y_unit(nch) = cellstr(vert_units(p : sz(2))); 
%  sampling frequency 
sampF = str2num(rate);
% horizontal unit 
xuni t  = horzunits;
% slope
p= 1;
q = findstr(y_slope, 
for 1 = 1 : nch - 1

slope(I) = str2num(y_slope(p : q(I) - 1)); 
p = q(l) + 1; 

end
sz = size(yslope);
slope(nch) = str2num(y_slope(p : sz(2)));
% offset
p=  i;
q = findstr(y_offset, 
for 1=1 :  nch - 1

offset(I) = str2num(y_offset(p : q(l) - 1)); 
P = q (I)+ l; 

end
sz = size(y_offset);
offset(nch) = str2num(y_offset(p : sz(2)));
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%  read data file 
p=size(fname); 
fname=fname( 1 :p(2)-4);

fname = strcat(fname, '.dat'); 
fid = fopen(fname, V);

%  Compute the number of bytes to skip into the data, based on user's input (S. Hayek, 
10/16/02)
secs_into_data=(mins offset*60)+secs_offset;
nbyteskip=secs_into_data*sampF*nch*2; % The 2 is to allow for 2 byte data words 
statusR = fseek(fid,nbyteskip,’bof); 
if statusR=-l 

message = ferror(fid) 
return 

end;
% Compute the number of ELEMENTS (not bytes) to read, based on user's input (S.
Hayek, 10/16/02)
nelread=secs_to_read*sampF;

%fprintf('Reading data ..An')

% [dt,count]=fread(fid,[nch,inf], 'inti6'); % Astulfi's original
[dt,count]=Tread(fid,[nch,nelread], 'int 16');
fclose(fid);

% convert data 
for I = 1 : nch

dt(I,:) = (dt(I,:) * slope(I) + offset(l)); 
end

% calculate data number 
ndata = count / nch;

% create X
% x = linspace(0, ndata / sampF, ndata); % Astulfi's original 
%x = linspace(0, ndata * sampF, ndata);
x = linspace(secs_into_data, secs_into_data+(ndata / sampF), ndata);
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clear all 
close all 
clc
% .......... ............................................................................... ....................
%user inputs (create a load file for these values)
TestParametersValues
speedup=30; % (s)FOR TESTING ONLY SET TO 1 OTHERWISE 
intervaltimemin=intervaltimemin/speedup;
% .................................................... ......... .................................................

StartFile=l; %First File to Read on the first Loop 
%need to subtract off the pause time for the graphs
% ...............................................................................................................
%Send Start Command
motorcommand %calls up .m file to send motor voltages 
%voltages are maintained at the last value?
% ...............................................................................................................
%Pause to Start TEAC recording 
fprintf('Please Start TEAC Recording. \n\n') 
prompt={'Press any button to begin Analyzing Data'}; 
title-Start Test';
!ineNc=l;
inputparam=inputdlg(prompt.title,lineNo);
% ...............................................................................................................
starttime=clock; %Start time of the program
% .................................... ...........................................................................
%Data analysis to determine if machine should stop 
MyStop^O; %Machine Stop command
intervalcount=l; %Counts the number of times the data is checked 
EndFiIe=:StartFile-!+intervaItimemin*speedup*60/(reclength+recintervaI);

%End File for first loop 
while MyStop==0;
% elapsedtime=etime(clock,starttime); %elapsed time in seconds 
%  if elapsedtime>=interva!timemin*60*intervalcount;

%command to start at interval mark 
% while elapsedtime>==!ntervaltimemin*60*intervalcount;

ECThresholdCheckmax %file to load and check max value 
StartFileHEndFile; % New First file is the last loops EndFile 
EndFile=End.::'ile+intervaltimemin*speedup*60/(reclength+recinterval);

%New Last File Header to Read 
intervalcount=interva!count+l; %Looping count number 

% end
% end 
end

M a t l a b ®  R e a l T i m e D a t a A n a l y s i s  F i l e
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% ............................................................................... .............................................................................................................................-

%issure stop command
specms=0;
rollms=0;
motorcommand %calls up .m file to send motor voltages
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M a t l a b ®  m o t o r c o m m a n d  F i l e

%Machine Values
rspec=.0381 /2; %(m) Radius of Specimen 
rroll=rspec*3; %(m) Radius of a Roller

RPMtoVolt=416.5; %Converts RPM to Voltage 
specsv=specms/60*(2*pi*rspec); %(rn/s) specimen surface velocity 
roIlsv=specsv*slipratio; %(m/s) roller surface velocity 
rollms=rollsv/(2*pi*rroll)*60; %(RPM) Roller Motor Speed 
specmv^specms/RPMtoVolt; %(V) Specimen Motor Voltage 
rollmv=rollms/RPMtoVolt; %(V) Roller Motor Voltage 
ao=analogoutput('nidaq','Dev2'); %speciFies the device type and ID number 
channels=addchannel(ao,[0 1 ]); %specifies channels to use for ao 
set(ao, 'SampleRate1, 8000); %sets the sample rate property 
t=linspace(0,1,16000); %linear space from a to b with n points 
y=specmv*ones(l,size(t,2)); %voItage data for specimen 
yl=rollmv*ones(l,size(t,2)); %voltage data for motors 
putdata(ao, [y' y 1']); %queue data to be sent on each channel 
set(ao, 'TriggerType', 'Immediate'); %when to start the data flow 
start(ao); 
wait(ao,5);
clear y yl ao channels t
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M a t l a b ®  E C T h r e s h o l d C h e c k n i a x  F i l e

clc
%
%lnputs
% .................. ™ ............................... ...........................
tc=0; %min Time correction value if time went 
%unrecorded and for a second group of files 
%*---------- -------- ----------------------------------

mins_offset=0;
secs_offset=0;
for j=StartFile:EndFile;

m  't:i
••

u ,

fname-['sUnt2str(specimennumber),'F0000',int2str(j),,.hdr']; 
elseif j>9 && j<l 00;

fname-['s',int2str(specimennumber),'F000',int2str(j),'.hdr']; 
elseif j>99 && j<l 000;

fname=F's'dnt2str(speeimennurnber),T00',int2str(j),’.hdr'|; 
elseif j>999&'& j<l 0000;

Ciarne:St's';int2str(specimennumber),'F0',int2str(j),’.hdr']; 
elseifj>9999 && j< 100000:

fname=['sl.int2str(speGimennumber),'F',int2str(jX'.hdr'];
else

fnameisf's’.iht2str(specimennumber),'F'.int2str(j)1’.hdr’l;
end
[RunTime.SingleData.Date.Time]-...

Teac2Matlab(mins_olTset,seCs_offseEsees_to_read,fname,EndFile); 
TostDala| Single Data: RunTime]:
DateTimeSlampfj.:)=]’ ’.Date.''.Time];

MinV('::j)=min(abs(SingleData).[i'.2)

,:)')Date .leStamp];

' %Min Values from each channel

\ .  •

m
I

■v>;s&.? vh ' • - -tv •
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V2(i,:)=MinV(i,:);
Values2(i,:)=V2(i,:)*channelconversions(i,:);
intervalMinVaIues(i,:)=min(Va!ues2(i,:));
changefrominitiaI2(i,:)=intervalMinVa!ues(i,:)-initialvalues(i,:);

end

% ...............................................................................................................
%This section plots the data desired 
correctionxaxis=[0:1 :StartFile-2]*0; 
xaxisl=[StartFile:l :EndFile]; 
xaxis=cat(2,correctionxaxis,xaxisl); 
yaxisplotcorrection=ones(totalchannelsread,length(xaxis)); 
for i=channelstart:channelend; 

changefrominitialplot(i, :)=...
yaxisplotcorrection(i,:)*changefrominitial(i,:);

initialvaluesplot(i,:)=yaxisplotcorrection(i,:)*initialvalues(i,:);
maxlimitplot(i,:)=yaxisplotcorrection(i,:)*maxlimit(i,:);
minlimitplot(i,:)=yaxisplotcorrection(i,:)*minlimit(i,:);

end
%-— ................................................... ..................................
%Plotting Loop for Max Values 
abovemax=l. 1; %Percentage above max Y value 
belowmin^; %Percentage below min Y value 
scrsz = get(0,'ScreenSize');
figureCPosition'JO scrsz(4)*.04 scrsz(3)*.5 scrsz(4)*.88])
%[distance from left, distance from bottom, width, height] 
for i=l :4;

Ymax(i)=max(Values(i,StartFile:EndFile));
Ymin(i)=min(Values(i,StartFile:EndFile));
subplot(4,l,i)
plot(xaxis,Values(i,:),'-k’,...

xaxis,initialvaluesplot(i,:),'-b','Linewidth', 1.5); 
axis([StartFile EndFiie belowmin*Ymin(i) abovemax*Ymax(i)]); 
T1TLE1L1=['SRCF Specimen ',num2str(specimennumber),':

' Channel ’,num2str(i)];
TITLE1 L2=['Start Time =

num2str((reclength+recinterval)*StartFile/60+tc),'min End Time = 
num2str((reclength+recinterval)*EndFile/60+tc),'min']; 

title( {TITLE 1L1 ;T1TLE1L2}); 
ylabel('Voltage (V)') 
grid; 
hold;
legend('Max Values','Initial Value','Location','EO');

% set(gca,'YTick',belowmin*Ymin(i):...
% (abovemax* Ymax(i)-belowmin*Ymin(i))/5:above:'nax*Ymax(i)); 
end
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xlabel('File Number’)
FileTitiel=['Figurel_',num2str((reclength+recinterval)*EndFile/60+tc),...

'minute.bmp'J; 
saveas (flgure( 1 ),FileTitle 1);
% — ..........................................................................................................
abovemax=1.025; %Percentage above max Y value 
belowmin=.975; %Percentage below min Y value 
figure('Position',[scrsz(3)*.5 scrsz(4)*.04 scrsz(3)*.5 scrsz(4)*.88]) 
%[distance from left, distance from bottom, width, height] 
for i=5:8;

Ymax(i)=max(Va!ues(i,StartFile:EndFile)); 
Ymin(i):=min(Values2(i,StartFile:EndFile)); 
subplot(4,l,i-4) 
plot(xaxis,Values(i,:),'-k',... 

xaxis,Values2(i,:),'-m',... 
xaxis,initialvaluesplot(i,:),’-b','Linewidth', 1.5); 

axis([StartFile EndFile belowmin*Ymin(i) abovemax*Ymax(i)]); 
T1TLE1L1=['SRCF Specimen ’,num2str(specimennumber),':

' Channel ’,num2str(i)];
TITLE lL2=['Start Time =

num2str((reclength+recinterval)*StartFile/60+tc),'min End Time = 
num2str((reclength+recinterval)*EndFile/60+tc),'min']; 

title({TITLEl LI ;TITLE1 L2}); 
if i= 5 ;

ylabel({'Cylinder Pressure';'(psi)'}); 
elseif i= 6 ;

ylabel({'Oil Temperature';'(C)'}); 
elseif i==7;

ylabel({'Specimen Motor';'Speed (RPM)'}); 
elseif i— 8;

ylabel({'Roller Motor';'Speed (RPM)'}); 
end 
grid; 
hold;
legend('Max Values','Min Values',...

'Initial Value','Location','EO');
% set(gca,'YTick',belowmin*Ymin(i):...
% (abovemax'+Ymax(i)-belowmin*Yinin(i))/5:abovemax*Ymax(i)); 
end
xlabel('FiIe Number');
Fi!eTitle2=['Figure2_',num2str((reclength+recinterval)*EndFile/60+tc),...

'minute.bmp'];
saveas (figure(2),FileTitle2);
clear MaxV V Values MinV V2 Values2
% ...............................................................................................................
%Statement to Stop if EC change is too large
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if intervalMaxValues( 1 ,:)>maxlimit(l 
MyStopCl = l;
fprintf('\nEC Channel i Outside Range\n\n'); 

else MyStopCl^O; 
end
if intervalMaxValues(2,:)>maxlimit(2,:);

MyStopC2z=l;
fprintf('EC Channel 2 Outside Range \n\n'); 

else MyStopC2=0; 
end
if intervalMaxValues(3,:)>maxlimit(3,:);

MyStopC3=l;
fprintf('EC Channel 3 Outside Range \n\n'); 

else MyStopC3=0; 
end
if intervalMaxValues(4,:)>maxlimit(4,:);

MyStopC4=l;
fprintf('EC Channel 4 Outside Range \n\n'); 

else MyStopC4=0; 
end
MyStopCl_4=[MyStopCl; MyStopC2; MyStopC3; MyStopC4]; 
clear MyStopCl MyStopC2 MyStopC3 MyStopC4 
if max(MyStopCl_4)>=l;

MyStop=l; 
else MyStop=0; 
end
clear MyStopCl_4 yaxisplotcorrection ... 

changefrominitialplot initialvaluesplot... 
maxlimitplot minlimitplot

pause(l); %time to pause so graphs can pop up
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clear all 
close all 
clc
%
fprintf('This program reads the max value from each interval recorded. \n\n') 
%lnputs
prompt={'First File to Read: 'Last File to Read:

'Specimen Number: 
title-input Parameters';
!ineNo=l;
inputparami=inputdlg(prompt,title,lineNo);
StartFile=str2double(inputparam( 1,1)); 
EndFile=str2double(inputparam(2,l)); 
specimennumber=str2double(inputparam(3,1));
% .................................. ............... .............................................. ....................
%Inputs global test values 
TestParametersValues
% ............................................................... - ....................................................
%This section reads the header files and brings in the data 
tO = clock;
for j=StartFile:EndFile; 

if j< 10;
fname-['s',int2str(specimennumber),'F0000',int2str(j),'.hdr']; 
elseif j>9 && j<l 00;

fname=['s',int2str(specimennumber),'F000',int2str(j),'.hdr']; 
elseif j>99 && j< l000;

fname=['s',int2str(specimennumber),'F00',int2str(j),'.hdr']; 
elseif j>999 && j< l0000;

fname=['s',int2str(specimennumber),'F0',int2str(j),'.hdr']; 
elseif j>9999 && j< 100000;

fname=['s',int2str(specimennumber),'F0',int2str(j),'.hdr'];
else

fname=['s',int2str(specimennumber),'F',int2str(j),'.hdr'];
end
[RunTime,SingleData,Date,Time]=...

Teac2Matlab(mins_offset,secs_offset,secs_to_read,fname);
TestData=[SingleData;RunTime];
DateTimeStamp(j,:)-[' ',Date,' ’,Time]; 
MaxV(:,j)=max(abs(SingleData),[],2); 
MinV(:,j)=min(abs(SingleData),[],2); 
MeanV(:,j)=mean(abs(SingleData),2);

end
Results=[num2str(MaxV(l :4,:)') DateTimeStamp];

M a t l a b ®  T 2 M v 2 S c r e e n i n g  F i l e
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matlabtime=etime(c!ock,t0)/60 
clear tO title 
tO=clock; 
for i=l :8;

V(i,:)=MaxV(i,:);
V2(i,:)-MinV(i,:);
V3(i,:)=MeanV(i,:);
V(i,:)=V(i,:)*channelconversions(i,:); %Correction Factors 
V2(i,:):=V2(i,:)*channelconversions(i,:); %Correction Factors 
V3(i,:)=V3(i,:)*channelconversions(i,:); %Correction Factors 

end
% ..........................................................................................................................................................................................................— ..................................................

%This section plots the data desired 
correctionxaxis=[0:1 :StartFile-2]*0; 
xaxisl=[StartFile:l :EndFi!e]; 
xaxis=cat(2,correctionxaxis,xaxis 1); 
abovemax=l. 1; %Percentage above max Y value 
belowmin=.9; %Percentage below min Y value 
scrsz=get(0,’ScreenSize');
figure('Position',[0 scrsz(4)*.04 scrsz(3)*.5 scrsz(4)*.88]);
%Plotting Loop for Max Values
figure(l)
for i=l:4;

Ymax(i)=max(V(i,StartFile:EndFile));
Ymin(i)=min(V3(i,StartFile:EndFile));
subplot(4,l,i)
plot(xaxis,V(i,:),'-r',xaxis,V3(i,:),'-k',...

xaxis,initialvalues(i,:),'-b','LineWidth', 1.5); 
axis([StartFile EndFile belowmin*Ymin(i) abovemax*Ymax(i)i;,
TITLE 1 L1=['SRCF Specimen ',num2str(specimennumber),': Channel ’,num2str(i)]; 
TITLElL2=['Start Time-',... 

num2str((StartFile-l)/2+timeoffset),'min End 
Time- ,num2str(EndFile/2+timeoffset), 'min']; 

title( {TITLE 1L1 ,TITLE 1L2}); 
ylabel('Voltage (V)’) 
grid
set(gca,'YTick',belowmin*Ymin(i):...

(abovemax* Ymax(i)-belowmin*Ymin(i))/5:abovemax*Ymax(i)); 
legend('Max Values','Mean Values','Initial Value','Location','EO'); 

end
xlabe!('File Number')
FileTitlel=['FigurelScreening_s',num2str(specimennumber),... 

'Time_',num2str((StartFile-1 )/2+timeoffset),'to',... 
num2str((EndFile)/2+timeoffset),'min','.bmp'];

figure('Position',[scrsz(3)*.5 scrsz(4)*.04 scrsz(3)*.5 scrsz(4)*.88]);
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figure(2) 
for i=5:8;

Ymax(i)=max(V(i,StartFile:EndFile));
Ymin(i)=min(V2(i,StartFile:EndFile)); 
subplot(4,l ,i-4)
plot.(xaxis,V(i,:),'r',xaxis,V2(i,:),’g',xaxis,V3(i,:),'k',...

xaxis,initiaivalues(i,:),'b','LineWidth',! .5); 
axis([StartF;le EndFile belowmin*Ymin(i) abovemax*Ymax(i)]);
TITLE1 L1=T'SRCF Specimen ',num2str(specimennumber),': Channel '.num2str(i)] 
TITLElL2=['Start Time=’,...

num2str((StartFile-l )/2+timeoffset),'min End 
Time-,num2str(EndFile/2+timeoffset),'min']; 

title({TITLEI LI ,TITLE1 L2}); 
if i—=5;

yIabel({’Cylinder Pressure’;'(psi)'}); 
elseif i==6;

ylabel({'Oil Temperature';'(C)'}); 
elseif i= 7 ;

ylabel({'Specimen Motor';'Speed (RPM)'}); 
elseif i—=8;

ylabel({'Rol!er Motor';'Speed (RPM)'}); 
end 
grid
set(gca,'YTick',belowmin*Ymin(i):...

(abovemax* Ymax(i)-belowmin*Ymin(i))/5:abovemax* Ymax(i)); 
legend('Max Values','Min Values','Mean Values', 'Initial Value','Location','EO'); 

end
xlabel('File Number')
FileTitle2=['Figure2Screening_s',num2str(specimennumber),... 

'Time_',num2str((StartFiIe-1 )/2+timeoffset),'to',... 
num2str((EndFile)/2+timeoffset),'min','.bmp'];

savefileinput=input('Save Figures to File? (1 is Y, 0 is N): '); 
if savefileinput==l;

saveas(figure( 1 ),FileTitle 1); 
saveas(figure(2),FileTitle2); 

end

findtime=input(’Find File Time and Cycles? (1 is Y, 0 is N): '); 
while findtime=-l;

filenumbermax-input('Value on X-Axis: ');
DateTimeStamp(fiienumbermax,:)
CyclesCompleted=...

(filenumbermax-1 )*(reclength+recinterval)*(specimenrpm*3)/60 
findtime=input('Find Maximum Time (1 is Y. OisN): '); 

end
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clear StartFile EndFile channelend channelstart fname lineNo prompt... 
specimenrpm specimennumber totalchannelsread secs_offset... 
secs_to_read tO xaxis xaxisl j i findtime filenumbermax... 
reclength recinterva! minsoffset Ymin Ymax
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clear all 
close all 
clc
fprintf('This program reads ail the raw data for a set of intervals recorded. \n\n'); 
%lnputs
prompt={'First File to Read: 'Last File to Read:

'Specimen Number: 
title—'Input Parameters';
!ineNo=l;
mputparam=inputd!g(prompt, title, lineNo);
StartFile;=str2double(inputparam( 1,1));
EndFile=str2double(inputparam(2,1)); 
specimennumber=str2double(inputparam(3,1));
% .....................................................................................................................
%Inputs global test values 
TestParametersVaiues
% ............................................................................. ...................... .................
%This section reads all the data in
mins_offset=0;
secs_offset-0;
tO = clock;
for j=StartFile:EndFile; 

if j<10;
fname=['s',int2str(specimennumber),'F0000',int2str(j),'.hdr']; 
elseif j>9 && j<l 00;

fnarne=['s',int2str(specimennumber),'F000',int2str(j),'.hdr’j; 
elseif j>99 && j<l 000;

fname=['s',int2str(specimennumber),'F00',int2str(j),'.hdr']; 
elseif j>999 &&j<10000;

fname-['s' int2str(specimennumber),'F0',int2str(j),'.hdr']; 
elseif j>9999 && j<l 00000;

fnaine=['s',int2str(specimennumber),'F0',int2str(j),'-hdr'];
else

fname-['s',int2str(specimennumber),'F',int2str(j),'.hdr’];
end
[RunTime,SingleData,Date,Time]=...

Teac2Matlab(mins_offset,secs_offset,secs_to_read,fname);
TestData(:,:,j)'=[SingleData;RunTime];
DateTimeStamp(j,:)--[' ',Date,' ',Time]; 

end
matlabtime=etime(clock,t0)/60 
fprintf('\n minutes \n\n')
clear tO matlabtime mins offset secs offset title

M a t l a b ®  T 2 M v 2 A n a l y s i s  F i l e
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tO=clock;

for j=StartFile:EndFile;
%timefix(:,j)=(]-l)*(reclength+recinterval); In equation below 
globaltime( I ,:,j)=RunTime( 1 ,:)+(j-1 )*(rec!ength+recinterval); 
globalloadcycles(:,:,j)=globaltime(:.:,j)*(specimenrpm*3)/60; 
%continuousxaxis(:,:,j)=TestData(5,:,j)+j-(j-StartFiIe)*(reclength-secs_to_read); 
for k=l :size(TestData,2);
continuousxaxis(:,k.j)=RunTime(l ,k)* l/(secs_to_read)+j; 

end 
end

% Voltage to Values 

for i=l :8;
V(i,:,:)-(TestData(i,
V(i,:,:)=V(i,:,:)*channelconversions(i,:,:); %Conversion Factors 
Y max(i)=max(V(i,:J));
Ymin(i)=min(V(i,:j));

end
%................ ........................................................... ....................................
%Plot
Xrnin=continuousxaxis( 1,1 ,StartFile);
Xmax=continuousxaxis(l,size(TestData,2),EndFile);
abovemax= 1.1;
belowmin=.9;
scrsz=get(0,'ScreenSize');
figure('Position'.[0 scrsz(4)*.04 scrsz(3)*.5 scrsz(4)*.88]); 
flgure(l); 
for i—1:4; 

subplot(4,l ,i) 
grid 
hold on
for j--StartFile:EndFile; 
plot(continuousxaxis( 1 j),V(i,: j));
TlTLE=['Raw Data for SRCF Specimen ',num2str(specimennumber),' from Channel 

',num2str(i)]; 
title(TITLE); 
ylabe!('Voltage (V)'); 

end
% axis([Xmin Xmax Ymirt(i)*belowmin Ymax(i)*abovemax]);
% set(gca,'YTick',belowmin* Ymin(i):...
% (abovemax* Ymax(i)-be!owmin* Ymin(i))/5:abovemax*Ymax(i)); 
end
xlabel('File Number');
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figure('Position',[scrsz(3)*.5 scrsz(4)*.04 scrsz(3)*.5 scrsz(4)*.88]); 
figure(2); 
for i—5:8; 

subplot(4,l,i-4) 
grid 
hold on
for j=StartFile:EndFile; 
plot(continuousxaxis( 1 V(i,:,j));
TlTLE=['Raw Data for SRCF Specimen

num2str(specimennumber),' from Channel ',num2str(i)]; 
title(TITLE); 
ylabel('Voltage (V)'); 

end
if i==5;

ylabei({’Cylinder Pressure';'(psi)’}); 
elseif i——6;

ylabel({'Oil Temperature';'(C)'}); 
elseif i= 7 ;

ylabel({'Specimen Motor'fSpeed (RPM)'}); 
elseif i==8;

ylabel({'Roller Motor';'Speed (RPM)’}); 
end

% axis([Xmin Xmax Ymin(i)*belowmin Ymax(i)*abovemax]);
%  set(gca,'YTick',belowmin*Ymin(i):...
% (abovemax* Ymax(i)-belowmin*Ymin(i))/5:abovemax*Ymax(i)); 
end
xlabel('File Number'); 
hold off

matlabtime^etimeCclocMOybO 
fprintf('\n minutes \n\n')

FileTitle 1 =['Figure 1 Ana!ysis_s',num2str(specimennumber),...
'Files',num2str(StartFile),'_',num2str(EndFile),'.bmp']; 

FileTit!e2=:['Figure2Analysis_s',num2str(specimennumber),... 
'Files',num2str(StartFile),'_',num2str(EndFile),'.bmp'];

savefileinput^inputCSave Figures to File? (1 is Y, 0 is N): '); 
if savefileinput~l; 

saveas(figure( 1),FileTitle 1); 
saveas(figure(2),FileTitle2); 

end

findcyclesHnputOFind Approximate Cycles and Time Stamp(l is Y, 0 is N): '); 
while findcycles==1;

ISO
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valueonxaxis=input('Va!ue on X-Axis of Figure 1 (Whole Number): ');
DateTimeStamp(valueonxaxis,:)
globalloadcycles(l, 1 ,valueonxaxis)
findcycles^inputCApproximate Cycles and Time Stamp(l is Y, 0 is N): '); 

end

clear findcycles valueonxaxis Date Time TITLE...
channelend chcnnelstart lineNo prompt recinterval reclength... 
secs_to_read specimennumber specimenrpm tO totalchannelsread 

clear i j k fname
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APPENDIX C

S-RCF Tester Supplemental Information 

Foerster Defectomat® EZ 2.828 Information [23]

T. * I f > r r f ' * 'Jr % V-v  .. ' - v r *

DEFECTOMAT* E2 2.828

An innovative, easy-to-use eddy current 
test instrument for detecting surface 
defects in a variety of applications

Tne DEFECTOMAT EZ is an Innovative addition to Foersters 
line of eddy arrertt testing instruments. The DEFECTOMAT EZ 
is used in conjunction wttn tne appropriate test coll system to 
detect sutTace detects in:

• Ferrous and nonrerrous bar, wire and tubing in me diameter 
range or 0 .010” - 7 ,000"

• Mass produced parts wttn simple or compiei geometries
• I n-servlce structures and equl pment

Tne DEFECTOMAT EZ can be Insaiied in tne production line or 
in an orr-Une;appiicaUon tor determination of procxt surface 
quality: Examples obtyplcal in-line applications include.drawing 
and rolling lines, welded lube lines, net wire and rod mills, 
finishing lines and grtnding lines. Examples or ofT-line 
appiicanonstnciude mspocticti lines, researen and development, 
and maintenance Inspection.

Test results are clearly presented cn me DEFECTOMAT EZ display 
for analysis,

■ B e n e f its

• Improved quality assuance tnrougn 100% 
oonnnuous alternate tispecncn

• Higily rellaDie and repeatable Inspection 
results by eiiminallrg tne subjectivity ot 'Visual 
Inspection techniques

■ feared scrap and reject-levels ana on lime 
delvenes or customer orders mrougn early 
detection or surface detects

* Optimized producecn mrougn improved 
process cornroi and mgn mrougnput speeds

* Simplified operater setup and standardization 
procedures

Features
• Wide (esnrequercy range.parmls accurate 

besnrvg of products in venous suss, snapes 
and materials

• Compatible with test coll syaerns designed fer 
me DEFECTOMAT family

■ Automatic moritomg or me test 0011
• High flaw resolution
• OpDonai.speed matenng flier card
• Optional cam to transfer defect counts to a 

remote,PC
• Bull In signal generator for ffoubiesncctng 

and insnment.vertficaaon
• Two paint martdng outputs
• Soning mo trree classes via an opBcnal 

remote PIC
• tow analog and pulse-expanded cUpLts 

available tor strip chart recording
• FVogram memory rcr easily reproducible test 

settings
• OpUcnal analog CRT for signal display
’ IVUBpie channel capability, common analog 

CRT
• Optional Haw signal processing
• Automatic test cell balancing

1 8 2
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DEFECTQMAT EZ 2 .828  Eddy C urren t Testing 
In s trum en t

■ Technical Data • A va ila b le  Coll Systems.

Cot! Syaiafra IMD endraing ana 
segmental colls: HD ana HMD encircling 
cals: transformsr. bridge ana parameter' 
type probes (adapter may be required); 
rolaimg pretoes RoSO, HRo and SlaRo.

Qpfessat C v A  Data collection caid to 
transfer defect count data to a PC : 
AutcriiEr card to autcmattaity vary nier 
selling as a luxtcn of testing speed.

TranscsMr 1/3/10/30/100/300/ 
1000/3000 Khz swtChabie.

Pftose SMKtor 0-360 degrees in 1 
degree-steps.

FBaring Separate LP and HP niter 
settings in 16 steps. Manual adjustment 
standard: automatic adjisment via 
optional card.

StroSMty Sa»*HJ w a s  dB In O.S
dB steps.

Operator Infcerteco Sealed ITcnt 
panel Keyboard. EZ Knob to cnange 
variable sellings.

Evaiinuan MacM Phase dependent 
TiYJi or XYtf, pnase dependent JsVM.

Flaw ThreWtukts Three independeit 
Hires nods S, M and L aqustabie In 5% 
steps.

Sys&sn M tanftnrlng Auomatc 
montonng or tea coll and mstrumant

StoragB Motmorn Internal RAM. 
bstteiy txinered; 10 acred sellings 
posable.

Test Speed Range
0-120 m/s (0-24.COO PM).

Inputs Tea ON/OFF: eztemal molton 
deck: eternal motion docK freeze; 
rotary synctronizatl on.

H40/H8O
Teaing of 0.3-100 mm diameter 
cold ferrous and nonferrous par. 
wre and tuning (to 180° F) 
without magnetic solution.

H4Q/H0OPM
Teaing of 0.3-100 mm diameter 
cold ferrous and nonfenous bar. 
wre and tubing (to 1 eo° F) with 
saturaDon magnetization by 
permanent magnet.

FMO-FtSOPMr
VWater cooled version or H4Q/H90 
PM for testing of materials at 
elevated temperatures.

M40/B0/170
Teaing of 0.3-180 mm diameter 
cold terrous and nonfenous Par, 
wre and tubing (to 180° F) with 
satirauon magnetization by 
electromagnet.

Y-Frffiencament For phase oepenoent 
evaluation, Y (vertfcaO gain adjustable
0.6,12.18 dB.

X-ARnnustian For phase dependent 
ei/aiua!fcn. attenuation ofX sgia! 
adjmtabie 0 , -6, -12, -18 dB.

O aaiousps Dfeptty Analog CRT: 
Ffiase-ampMude (Hying do!) or Y/t for 
eddy current signal display

Sarong* Dtapfcay Back lit LCD display

Interface RS232 interface for contra 
Dy a noa compute

Outputs T tree instontaneous flaw 
outputs (S, M and I): two independent 
manang outpus (M and D: interface tor 
soling via optional PLC: analog 
outputs X.Y, V and SjjJSft line speed 
doc* output Tea ON/OFF output.

DUnsnslorts
MlVftD: 7.75” X 17.75"! 26.75" 
Foldable front legs.

Transmitter T
Teaing of 5-125 mm diameter not 
renous and nonferrous Pic wire 
and tuning (to 2200° F).

HRo
Teaing of ferrous and nonfenous 
materials wim a nand Held 
rotating prooe scanner

StaRo
Teaing or ferrous and nontenous 
materials with an automated 
rotating prooe scanner

J
L
r~

50 IDS.

O p a n ttig  tenyaratum
32° -105° F

0° -120° F

IFQERS-
FO'ERSTER INSTRUMENTS INCORPORATED . :
140 Induttry Drive. RIDC ParK Vltest PKtsDurgn, Pennsylvania. U.S / 

;8 0 0 /6 3 5 -0& 13 FAX: 412/788-^984 Outside me US;. 412/7 
•E-Mail: sal|K@Toerstergfoup.com w w w .foerstergroup tjom

Protm
Teaing of ferrous and nontenous 
materials using hand held or 
automated probe systems

‘ • \  ‘wt,No -
. . .  ... r a  *>.n ;

ylvanta, U S A/. 15275-102B ' ,. ’ ' A
l US;. 412/788-8978 nci2 M i 6 6/w
iroup.tjom ■ ■■■■ .. I'/ ..'V. f./;;.'.;/-.;

II/
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A l u m i n u m  T i e  R o d  A i r  C y l i n d e r  S p e c i f i c a t i o n s  [ 15]

3 ”  Tie R o d  A ir  C y lin d e rs
Alum inum  Tie Rod A ir Cylindf rs

and 1V(T Boro Sizes

-*--------  O v e ra ll  E x te n d
L --------------- A  -

e d  L g . ------- • -

...
-— L.......±a
B  B -*

------J — - Z jV -F

V t f  to 4Yn" Boro S ilas

c @ 
i

F - ^ - H  H H*

External tie rods, which are made of steel, protect the cylinder 
barrel while still allowing easy disassembly for repairs. To make 
repairs, use the replacement seal kits. All of these cylinders are an 
economical choice for high-force output when the cylinder is working 
against simple horizontal loads, with no side loading. They are double 
acting—they have two compressed air ports: one to extend in the 
“push" direction and another to retract in the "pull” direction. They 
are not interchangeable with NFPA-footprint cylinders. Maximum 
pressure is 250 psi (except for ZA" and 1 Vs" bore sizes, which ie 150 
psi). Temperature range is 10° to 200° F (except for and 1W  bore 
sizes, which is 0° to 180° F). For all cylinders, please
specify stroke length in Vs" increments from the ranges listed.

C y lin d e rs  and C ylin de rs  w ith  C ush io n—Have an aluminum 
barrel, rod bearing, and end caps; chrome-plated steel piston 
rod. They are not switch ready.

S w itch -R e a dy  C y lin de rs—Have an aluminum barrel. For ■%" and 
1 Va" bore  sizes: rod bearing is bronze, piston rod is Type 303 stain
less steel, and sod caps are steel. For a ll o the r sizes: rod bearing 
and end caps are aluminum; piston rod is chrome-plated steel.

mMfl'UrHillWiiMIMII F o r a dd itiona l in form ation  abou t those p rod u c ts , go to  o u r w eb  site, w w w .m cm aste r.com , a nd  search fo r 6491KAC , 
o r fax us a t 630-782-3800  a nd  request 6491KAC.

Bore
Size

Force ®
100 psi, lbs.

Port Pipe 
Size, Female

Rod, Thread 
SizexLg. (B) (C) (E)

Mounting 
Holes IF) (H) <-»)♦

V 39 Va” NPT V.'-28x %■ r 0.75” 6-32 V*
1 Va" 88 Va" NPT yo"-2 4xya" 1 Va" 1.125" 10-32 IV b"
V A " 112 Va" NPT ya"-16x 1" 1 'Via" 1.281" '/.'-28 ___ 2V32" + Stroke Lg.
V A " 196 V." NPT y .-- i0 x iv a " 2Va" 1.718" Via"-24 *%a" 23%«T+ Stroke Lg.
2" 269 V." NPT y."-10x1Va" 2Vs" 1.875" '/.'-28A *%a* 23%d"+ Stroke Lg.
2 Vs” 447 Va" NPT %*-10x V /2 2 W 2.206" Vie"-24 1V." 23®/e4"+ Stroke Lg.
3“ 662 Va" NPT y."-10x 1Va” 3W 2.625" Vie"-24 1W 23%*“+ Stroke Lg.
3V4" 884 Vi" NPT

tX 4Ve" 3.224" Vi'-20 1s%a" 37/od" + Stroke Lg.
A W 1512 Va" NPT | i ’-8x1%- 5Ve" 4.024' Va"-20 2Vi' 37/e4" •+ Stroke Lg.
♦ For cylinders with cushion, add 1". A 3/ie‘-24 for mounting holes on the side of the cylinder.

184
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Pressure Transducer (PX209-200G5V) Specifications [! 8]

SPECIFICATIONS 
Voltage Output
Excitation: 2 4  V d c  @  15 m A  (7 to  35 
V d c  fo r 5 V  o u tp u t, 12 to  35 fo r 10 V  
o u tp u t )

Output: 0 to  5 V d c  o r 0 to  10 V d c  ±1 .5 %  
(3 -w ire )
Zero Balance: 0 V d c  ± 2 %  F S O  

4 to 20 mA Output
Excitation: 2 4  V d c  (7  to  35 V d c )  reverse 
p o la r ity  p ro te c te d
Output 4 to  20 mA ±1% F S O  (2 -w ire ) 
Zero Balance: 4 mA ±2% F S O  
Max. Loop Resistance: 50  x  (s u p p ly  
v o lta g e  -10) O h m s

Common Specifications
Accuracy: 0 .2 5 %  B F S L  ( in c lu d in g  lin e a rity , h y s te re s is  and re p e a ta b ility )  
Operating Temperature: -54 to 12rC  (-65 to 250”F)
Compensated Temperature: -20  to  80°C  ( A  to  176“ F)
Thermal Effects: 0.04% F S /°C  (0.02% F S  / ’ F )
Proof Pressure: 150%
Burst Pressure: 3 0 0 %  ra nge  m a x .
Response Time: 2  m S  ty p ic a l
Vibration Sensitivity: A t  2 0  g p e a k  s in u s o id a l v ib ra tio n  fro m  10 H z  to  2000
H z  (1 .2 "  D .A .) , th e  o u tp u t sh a ll n o t e xce e d  0 .0 4 %  F S /g  fo r 15 ps i ra nge  to
0 .0 0 5 %  F S /g  fo r 100 ps i and above
Natural Frequency: > 3 5  k H z  fo r 100 ps i range
Gage Type: D iffuse d  s ilic o n  s tra in  gages
Wetted Parts: 31 6  S S . b o ro s y lic a te  g la s s , s ilic o n  n itr id e , e p o x y
Pressure Port: 1/4 -18 N P T
Electrical Connections:
P X 209: 1 m (3 6 ") s h ie ld e d  4 -c o n d u c to r c a b le  
P X 219: D IN  4 3 6 5 0  P lu g  C o n n e c to r S upp lie d  

Weight: 128 g  (4 .5  oz )

PS I R ange . B A ^  R ange CABLE- STYLE/ CONN. STYLE. 

GAGE PRES SURF RANGES (psig) W ITH  0 to 5 \4dc OUTPUT
CO M PA TIB LE METERS

0 to  15 O to  1.0 P X 2 09 -016 G 5V P X 2 19 -015 G 5V D P i3 . D P 4 1 -E . D P 2 5 B -E

0 to  30 O to  2.1 P X 2 09 -030 G 5V P X 2 19 -030 G 5V D P i3 . D P 4 1 -E . D P 2 5 B -E

0 to  60 O to  4  1 P X 2 09 -060 G 5V P X 2 19 -060 G 5V D P i8 . D P 4 1 -E . D P 2 5 B -E

0 to  100 0 to  6 .9 P X 209-1Q 0G 5V P X 2 1 9 -1 0 0 G 5 V D P i3 . D P 4 1 -E . D P 2 5 B -E

0 to  200 O to  13 8 P X 2 09 -200 G 5V P X 2 19 -200 G 5V D P i8 . D P 4 1 -E  D P 2 5 B -E

0 to  300 0 to  20 .7 P X 2 0 9 -3 0 0 G 5 V P X 2 19 -300 G 5V D P i8 . D P 4 1 -E . D P 2 5 B -E

l 85
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A i r  P r e s s u r e  R e g u l a t o r  S p e c i f i c a t i o n s  ( M o d e l  4 1 5 5 5 K 5 3 )  [ 1 7 ]

A ir  F ilte r/R e g u la to r/L u b ric a to rs  ( F R L s f ~ ^
For Information about air preparation, see page 935.

Just connect the ends to your system—we've already selected matchlna components and 
assembled them as one unit, threaded together with pipe nipples. Regulators Include a gauge and 
are relieving style, which reduces downstream pressure through a vent port when your system is 
blocked. Accuracy Is ±3 psl or better. Lubricators have a sight glass; 10W nondetergent oil (ISO 
Grade 32) Is recommended. Mounting brackets are sold separately (unless noted) and Include hard
ware. Inlet and outlet connections are NFT female. Stacked units combine a filter and regulator Into 
one “piggyback" device, with a lubricator at the side.

(A K, Ml Standard—Filters have a polypropylene element that removes particles as small as 5 
microns. Drain Is automatic. Body and bowl are zinc.(B, F, L, N) Lightweight—Filters have a polypropylene (unless noted) element that removes 
particles as small as 5 microns. Drain Is automatic. Body and bowl are aluminum.(C, C) Easy View—A clear polycarbonate bowl lets you see what’s being filtered. Fitters have a 
polyethylene element, except stacked units which have a polypropylene element. All remove particles 
as small as 5 microns. Drain is automatic. Body Is zinc. Style C has a steel bowl guard.(D, H) Lightweight Easy View—A clear polycarbonate bowl lets you see what's being filtered, while 
an aluminum body makes the unit lightweight. Filters have a polypropylene element that removes 
particles as small as 20 microns (unless noted). Drain Is manual (unless noted).(E, J} Chemical Resistant—Have increased chemical compatibility. A clear polyurethane bowl lets you 
S8ew'hat's being filtered and won't crack In systems heavy with synthetic compressor oils. Filters have 
a polypropylene element that removes particles as small as 20 microns. Drain Is manual. Body Is brass.

Max. Oil
Pipe sctm ffl Regulating Cap., Max. Max. O'all Size, Complete Units
Size 100 psl Range, psl oz. Temp. Pressure Hl.xWd._____________________ Each____________Each____________Eacn

Filter/Regulator/Lubricators
A . w . . ... 49... .... 5-150..... ..... 2.2.. ..150° F. . 150 psl ... .. 7.44“* 6.46“ . 4957K53.... ..$103.58 4968K81 $2.46 4957K61 ■ $5.01
A y*\. 49. .... 5-150..... ....  2.2.. .. 150° F. . 180 psl... 7.44“x 8.46 . 4957K54 .. 109.06 4966K81 2.46 4957K61H 5.01
B . Vi'.. ... 60... .....5-150..... ..... 3.5.. .. 175° F. . 250 0SI . . 8" « 9.13“ . 4957K58.... .. 148.87 4958K82 3.91 4957K62* 5.52
D . Vi”.. ...116 . .5-150. ... . 7 .... .175° F . 250 psl.. 8.8' x 10.32' . 4957K87 .. 178.09 4S58K95 5.57 491CK98ii 5.72
B yv\. ...116.... ... 5-150..... ..... 7 ..... .. 175° F. .250 psl . . 8.8“ x 10.52 . 4957K88 .. 181.89 4958K95 5.57 4910K98* 5.72
B y*~.. 168 .5-125 .... 32 ..... .. 175° F. .250 psl . ,.12.78'x 14.75 ' . 4957K27 + . 337.40 4968K97 24.61 4957K77 30.60
B . r ..... ...168 .... 5-125..... . 32.... .. 175° F. .280 psl.. ..12.78“* 14.75 . 4967K284* .. 316.04 495GK97 24.61 4957K77 30.60
B .1W .. ...168 .... 5-125..... ... .32.... .. 175° F. .250 psl.. ..12.78'x 14.75 4957K23 + .. 368.19 4958K97 24.61 4957K78 34.11
c . v«\. ... 45... .....2-125..... .... 2.9 ..125° F. . 150 psl . 7.93'x 9.45- . 41555K51 143.20 41555K81 3.79 41555K41 5.33
C 65... .... 2-125.... 2.9 .. 125° F. . 150 psl. . 7.93'x 9.45 4155SK52 .. 143.20 41555K81 3.79 41565K41 5.33
c •A".. 65.. .... 2-125..... 2.9 .125° F. 150 psl... .. 7.93'x 9.45 41555K53 . 143.20 41555K81 3.79 41565K41 5.33
c y r.. 95 2-125 6 ... .. 125° F. 130 psl.. .. 9.38'x 10.74 . 41555K54 .. 161.49 41555K82 5.58 41555K74 5.33

K&L

Rept. Fitter MountingElements Brackets

1 8 6
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Mechanically Operated Three Position Four-Way Control Vaive (PL25) [16]

Heavy-Duty Mechanically Operated Air Valves

Hand Throttle
Roller

Roller Lever Toggle Lever

Heavy-duty high flow mechanically operated valves are constructed with corrosion-resistant materi 
types of mechanical operators including foot, palm, hand locking and air actuated.

Mfr’s /
Inlet/Outiet 
Size (NPT)

Valve
Type

Actuator
Type

CV
Rate

Working Pres, psi 
Min. Max Order# Price Ea.

PL25 Vi 4-Way, 3 Position Hand Throttle 2.2 0 150 01228873 $142.24
PL37 ¥s 4-Way, 3 Position Hand Throttle 2.6 0 150 01228881 142.24
PL50 V.i 4-Way, 3 Position Hand Throttle 5.3 0 150 01228899 186.39
410211000 Vs 4-Way, 2 Position Roller Lever 0.2 32 175 01223907 62 64

Hand Throttle
• Vi", W  and W’ NPT 4-way, 3 position rotary disc air valves operate with a 90° lever movement
• Ground & lapped bronze disc and cast iron surface provide a leakproof seal
• Air pressure from inlet port seals tighter as pressure increases
• Only 15 Lbs. pressure required to move lever at 100 psi
• Detent for easy location of neutral position
• Excellent for inching of double acting cylinders
• Rated at 0-150 psi. 18-200°F. CV up to 5.3
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Temperature Probe (THX-400-NPT-72) [24]

Thermistor Probe
ALL MODELS AVAILABLE FOR FAST DELIVERY!

T h is -h ig h -p re s s u re  p lu g  s e n s o r  is  id e a l fo r  v e s s e l 
a p p lic a tio n s , p re s s u r iz e d  c o n ta in e rs , a n d  
a p p lic a tio n s  re q u ir in g  N P T  m o u n te d  s e c u r ity  fo r 
fix e d  re a d in g s . T h is  a c c u ra te  th e rm is to r, p ro b e  is  
2 2 5 ?  O. @ 2 5 iC . Its  3 0 4 S 5  s h e a th  h a s  a  6 .0  m m  
(0 .2 5 ") d ia . p ro b e  p ip e  p lu g , w ith  2 m  (8 0 ")  o f  
2 6 -A W G  Te flon®  in s u la te d  s ta in le s s  s tee l 
o v e rb ra id e d  s tra n d e d  w ire  w ith  s tr ip p e d  le a d s . 
P re s s u re  ra t in g  is  2 5 0 0  psi (1 7 2  b a r). T h e  h e x  f la ts  
a re  14.1 m m  (0 .5 6 ") a p a rt, a n d  16 .0  m m  (0 .6 3 ") 
a c ro s s  p o in ts . H e x  f la ts  w id th  is  6 .0  m m  (0 .2 3 ") .

'A
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APPENDIX D

Specimen and Roller Drawings 

S-RCF Specimen Pro-E® Drawing

o  « o  o
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-0.000 — 1.241 +0.002

-0.000

-0.0000

-  4.5000 +0.0000
-0.0015 @ C ]

Concentric ID and OD .0005 inches 
Heat Treatment Instructions 

-H ardness58to 62 HRC
- Case Depth 0.037 to 0.055 (.047 aim)

- Effective Hardness 50 HRC
- Surface Carbon 0.85 ±  0.05
- Final Surface Microstructure - Martensite + Austenite

- Retained Austenite - 10% Max
- Other NoivTransformed Product - 5% Max 

Ground to 16 - 20 mtcrotnches
Don't break test surface edge

Ttxs info rm atio n  a  sots >y th e  

p ro p e rty  at the Unrw ersay of 

N o rth  D a k o ta 's  E n g in e e rin g  
S u rfa c e  C e n te r

SCHOOL O F ENGINEERING AND MINES 
UNIVERSITY OF NORTH DAKOTA

SRCF-5000P-04M}ATei3WET>
24->Apr-C7

SKvTBr
Gregory Dvorak " a  S R C F  3000PD-04M-R01 “ v

m i  by

ESC 0.500 8620 steel I S H E E T  1 OF 1
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I SHEET 1 O  1 I S3CF-X0CPCMHM-RD

.06 x 45 Chamfer 
both sides

Test Surface (Don't Break Edge)

500 i-O.OOO 
-0.004

____ L U  JL / /  .001
\ .001

.250 +0.002
-0.000

00

1.241 +0.002
-0.000

Concentric ID and OD .0005 inches 
Heat Treatment Instructions

- Hardness 58 to  62 HRC
- Case Depth 0.037 to 0.055 (.047 aim)

- Effective Hardness 50 HRC
- Surface Carton 0.85 ±  0.05
- Final Surface Mcrosiructure - Martensite + Austenrte

- Retained Austenite -10%  Max
- Other Non-Transformed Product - 5% Max 

Ground to 16 - 20 microtnches
Don't break test surface edge

1.1250 +0.0004
-0.0000

4.6600 +0.0015
-0.0000 ® afwcxtrnw A*3ie

This information is soieiy the 
property of the Urrversityof 
North Dakota's Engineering 
Jurface Center.

SCHOOL OF ENGINEERING AND MINES 
UNIVERSITY OF NORTH DAKOTA

SRCF-5000P-04M Top  RollerKTitsSSEc
24-Apr-Q7

C*V<N MV
Gregory Dvorak [ a I i^RCF ̂ 5000PD-04M-R01 ~

ESC **“ 0.500 8620 Steel SHEET 1 O f 1
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Heat Treatment for 8620

Final Requirements for Specific Part

Heat Treatment of 8620 RCF Coupons

• Hardness -  58 to 62 HRC
• Case Depth - .037 to .055 (.047 aim) with Effective hardness 50 HRC
• Surface Carbon- 0.85 ±0.05
• Final Surface Microstructure- Martensite plus Austenite
• Retained Austenite - 10% Max
• Other Non-Transformed Products- 5% Max

Quality Check

Insert (2) test bars of #8620 steel Vz" in diameter and 3”long into work load prior to going 
into the carburizing cycle. These bars will be removed, hardened, cut, polished, acid 
etched and the carburized depth measured on a microscope to ensure the correct carbon 
depth before the load is hardened.

Carburize cycle

1. Carburize to desired depth with:
Set furnace carbon potential: 0.85% and wait until furnace has reached the proper 
carbon potential
Carburizing Set Temperature: 1700 Degrees F
Load parts and after furnace temperature recovers, set cycle time to:
Time at temperature:

5 hours = 0.037” effective case depth
6 hours = 0.040” effective case depth
7 hours = 0.043” effective case depth
8 hours = 0.046” effective case depth
9 hours = 0.049” effective case depth

2. Gas quench cool by:
Drop furnace temperature to 1475° F before moving parts to gas quench vestibule 
or top cool to 450 0 F.

3. Austenitize and quench harden parts by:
Set furnace carbon potential to be at 0.50%
Set furnace temperature to 1550° F and when furnace temperature indicators reach 
the set temperature, load parts into furnace.
When furnace temperature recovers, set cycle time to 1 hour.
At the end of the hour quench parts into agitated oil that has been controlled at a 
temperature of 120° F. Leave parts in oil for at least Vz hour.
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4. Clean oil off parts.

5. Subzero parts to ensure at least 85% transformation of auatemte to martensite.
Set subzero to at least -120° F., load parts and after subzero returns to -120° F, set 
cycle time for 2 hours.
NOTE: If cryogenic unit is available, set unit to -320° F, load parts and after unit 
returns to set temperature, set cycle time for 2 hours.

6. Temper parts to remove stress.
Set oven temperature to 300° F. When oven reaches set temperature, load parts 
and when oven temperature recovers to set temperature, set cycle time for 2 
hours. After cycle has been run, remove parts and allow the parts to cool to be 
able to safely handle.

7. Clean parts in a glass bead machine and check parts for hardness.

Joseph Shenosky 
January 20, 2006 
Revised July 14, 2006

Dr. Ranko Torodvic 
Updated for 8620 
Febuary 18, 2008
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APPENDIX E

Outline for S-RCF Test Setup Procedure

1. Insert bottom rollers.

a. Slide rollers onto each shaft.

b. Slide regular collars onto each shaft.

c. Push shaft into place.

i. Align the key on the shaft with the keyways in the collars.

d. Place and tighten a hinged collar on the stepped portion of each shaft.

e. Tighten tightening plate at the end of each shaft.

f. Tighten set screws on the bearings of each shaft.

2. Attach specimen end oil wall.

a. Check PTFE tape, reapply if necessary.

b. Place plate into position and tighten ten hex head bolts.

c. Grease oil seal in specimen end oil wall.

3. Insert probe holder and specimen.

a. Attach probe holder to one of the specimen sliding plates.

b. Slide probe holder and specimen sliding plate assembly into the inner wall.

c. Insert the other specimen sliding plate with the short shaft and tightening plate 

into the inner wall.

i. Attach the probe holder to the other specimen sliding plate.

d. Insert the shaft with the spider couple into the oil seal located in the specimen 

end oil wall and the specimen sliding plate.
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e. Place the specimen into the S-RCF tester by sliding the tabs on the specimen 

into the slots on the shaft.

f. Secure the specimen in place by placing hinged collars (2) over the tab slot 

interface.

g. Tighten the tightening plate on the back of the specimen short shaft to remove 

any slack.

h. Tighten the set screws on bearing collars for the specimen assembly.

4. Attach the specimen and roller motor.***

***Two people are needed for this step.

a. Move the specimen motor into place and align it the spider couple.

i. Bolt tightly into place.

b. Move the roller motor into place by lifting it onto the gears.

i. Bolt tightly into place.

ii. Screw roller end oil wall into place.

1. Check PTFE tape, replace if necessary.

5. Insert eddy current probe.

a. Insert the eddy current probe into the probe holder device.

b. Set the distance of the probe away from the specimen using the spark plug gap 

gauge.

i. Maximum distance is 1mm - Nominal distance is 'A mm.

c. Tighten the screw on the side of the probe holder to secure the probe.

i. Do not over tighten as this will damage the probe.

ii. Tighten the nut on the screw to prevent the screw from vibrating out.
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6 .  A s s e m b l e  a n d  i n s e r t  t o p  r o l l e r .

a. Slide the rollers and collars on to the top roller shaft.

b. Slide the top roller sliding wall on the top roller shaft.

c. Screw the tightening plate into the top roller shaft.

d. Tighten the set screws on the bearings of the top roller assembly.

e. Lift the top roller assembly into the machine and slide it slowly into the inner 

walls.

i. It may require two people to insert the wall (1 for each side).

7. Apply loading.

a. Plug in the air compressor.

b. Set the pressure on the air compressor.

i. The gage on the compressor can be used as a crude approximation.

ii. Use the LX-Navi voltage to achieve a more accurate representation.

8. Add lubrication and begin lubrication system.

a. Check the direction of all the three-way control valves and the flow control 

valves.

b. Add lubricant to the oil filter and attach the oil filter.

c. Add the lubricant into the specimen and gears compartments.

i. At least one gallon of lubricant should be added.

d. Plug in the oil system.

e. Flip the switches on the lubrication control box to the on position.
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i. If lubricant does not immediately begin flowing, prime the system by 

turning the flow control valve to the specimen on and off quickly 

several times. Repeat until oil begins to flow.

9. Setup eddy current detection device.

a. Several settings need to be entered into the Defectomat EZ. These settings 

can be determined using the appropriate Mathcad® file located in Appendix 

C: Mathcad® files.

i. Inspection frequency.

ii. Line speed.

iii. High pass and low pass filter values.

iv. Sensitivity.

10. Power on TEAC LX-10.

11. Power on personal computer.

12. Setup LX-Navi program (see Table 7 for a list of parameters).

a. Create a folder for all the data to be saved into.

b. Open the LX-Navi program.

c. In the main window, click the New File button or click new file in the file 

drop box menu.

i. Set the options for the new file.

1. Set the directory to the folder created in step a.

2. Set the file name (ex: siF).

3. Set the number of zeros in the file name.

4. Check the PC recording option.
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d. In the main window, click the System button or click system in the setup drop 

box menu.

i. Under the system tab, set the system values.

1. Set the sampling rate.

2. Synchronize the LX-Navi clock with the PC clock.

3. Check Slot 1.

4. Set number of channels for Slot 1.

ii. Under the Slotl (PA-8) tab, set the channel values.

1. Set the calibration value for every channel.

a. Channels 1-4: 3.16V.

b. Channels 5-8: 1OV.

e. In the main window, click the Trigger button or click trigger in the setup drop 

box menu.

i. Set the trigger options.

1. Check the interval check box.

2. Set the record time.

3. Set the interval time.

4. Set the repeat count value.

5. Set the start time.

13. Set up and power on monitoring and controlling devices.

a. Drag the Matlab® files into the directory that the files from the TEAC will be 

created in.
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T2Mv2CrackMeasurements, T2Mv2Analysis, REalTimeDataAnalysis, 

motorcommand and ECThreshoIdCheckmax.

b. Plug in the power for the pressure transducer and the temperature probe.

c. Turn the control switches on the face of the motor controller box to off.

d. Flip the two breakers in the breaker box to power up the motor controllers.

i. Breaker group 13-15-17 and 37-39-41.

14. Acquire initial values.

a. Turn on the lubrication system and the air compressor if they are not already 

on.

b. Open Matlab®.

i. Set Matlab® working directory to the folder the files are located.

ii. Open the TestParametersValues file.

iii. Edit the values and set them to the current values known, Save the file.

iv. In the Matlab® prompt window type TestParametersValues.

v. In the Matlab® prompt window type motorcommand.

c. Flip the switches on the front of the controller box to on to start the motors.

i. Let the motors power up to full speed.

d. Determine the initial values by:

i. Open the LX-Navi digital readouts and visually record max value.

ii. Record several files and analyze with T2Mv2Analysis file.

1. If this option is used, a new file must be setup in the LX-Navi.

e. Turn the switches on the front of the controller box to off to stop the motors.

i. F i l e s :  T e s t P a r a m e t e r s V a l u e s ,  T e a c 2 M a t l a b ,  T 2 M v 2 S c r e e n i n g ,
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i. The oil temperature value will vary significantly since it will not be at 

equilibrium until testing has been running for awhile.

ii. Based on the initial values, set the maximum allowable change on each 

channel.

1. For channels 1-4 (eddy current channels) the value is a voltage 

change. This voltage change can either be determined by 

performing calibration tests on parts with know defect sizes or 

by observing the noise in the base signal and determining an 

appropriate value.

2. For channels 5-8, the value entered is a percentage of the initial 

value. These values do not stop the machine; therefore, the 

value entered is up to the user’s discretion.

iii. Save the TestParametersValues file.

15. Start the S-RCF tester.

a. Clear any old data files created in the folder.

b. Set the start time in the LX-Navi trigger menu.

i. Set to approximately two minutes from the current time.

c. Enter RealTimeDataAnalysis into the Matlab® prompt window and press 

enter.

i. Pop-up window will appear displaying a message.

d. Turn the switches on the front of the motor controller box to on.

f. O p e n  t h e  T e s t P a r a m e t e r s V a l u e s  f i l e  a n d  e n t e r  t h e  i n i t i a l  v a l u e s .
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e. Allow the motors to reach full speed and then click OK on the pop-up 

window.

f. Monitor the tester for the first ten minutes to ensure that the graphs appear and 

display reasonable information.

g. Periodically check the machine to determine if more lubrication is needed.

i. Record time that oil is added.
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Outline for S-RCF Test Disassembly Procedure

1. Stop power to the motors.

a. Turn the switches on the motor controller box to off, even if the motors 

are already stopped.

2. Stop the LX-Navi and Matlab® programs.

a. In the LX-Navi window, click the stop button to cancel further recording.

b. In the prompt window of Matlab®, hold the ‘Ctrl’ button and press ‘c’.

i. This will terminate the while loop in the program.

3. Switch off the iubi ication and monitoring systems.

a. Unplug the power supply for the pressure transducer and the lubrication 

temperature probe.

b. Turn the lubrication system off using the switches on the lubrication 

system control panel.

4. Open the S-RCF tester.

a. Remove the load on the top roller.

b. Remove the top covers.

5. Remove the specimen.

a. Slide out the top roller assembly.

i. If it is jammed, use the air cylinders to lift the assembly out.

b. Remove the hinged collars on the specimen assembly.

c. Slide out the specimen.

d. Disassemble the top roller assembly to remove the top roller.

6. Remove eddy current probe
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7 .  D r a i n  t h e  l u b r i c a n t  f r o m  t h e  s y s t e m .

a. Flip the valves on the lubricant system so that the lubricant flows into the 

reservoir container.

b. Turn the lubricant system back on.

c. Pump the lubricant until no more flows out of the hose.

d. Turn the lubricant system off and unplug it.

e. Flip the valves on the lubricant system so that the lubricant drains out by 

gravity into a reservoir container.

i. The flow should be minimal.

8. Remove motors.***

***Two people will be needed to lift the motors

a. Unbolt the specimen motor and lift it out of the way.

b. Remove the specimen shaft with the spider couple on it.

i. Loosen the set screw in the bearing to remove this shaft.

c. Unbolt specimen end oil wall and remove.

d. Lift out specimen sliding plates and probe holder.

e. Unbolt roller end oil wall.

f. Unbolt roller motor and lift the motor out of the way.

9. Remove bottom rollers.

a. Remove the tightening plate on the back of each shaft.

b. Remove the hinged collar on the shafts.

c. Loosen the set screws in the bearings holding the shafts.

d. Move the shaft axially towards the gear side.
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i. Line up the keyway in the keyed collars with the key on the shaft.

e. After a Zz gap is present between the bearing and shaft, remove the regular 

collars.

f. Slide the rollers off.
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R e p l a c e m e n t  P a r t s

Spur Gears for Roller Motor and Roller Shafts (Y412) from the Browning Catalog,

ordered through Tri-Steel in Grand Forks, North Dakota.

14-1/2* PA g ttr t  w ilt not e p w j i*  ».l*i 20“ PA

14*1/2 * PA 
PART 

NO

2C*PA
PART

NO

T
£
e
T
H

1
T
Y
L
C

PITCH
D1A FACE BORE HUB

0(A

...

HUB | 
PROJ ■

S411 T3411 U 3 3.000 2.00 1.125 2.25 •as !
A411 F*11 11 4 3 000 2.00 1.128 *.— * ~~ I

S412 TS412 12 3 3.000 2.00 1.125 2.25 .86
*412 F4J2 t2 A 3.000 2.00 1.125

Y 4i: 12 3 3 000 3.50 1 063 2.25 1 00 ]
Z412 12 A 3.000 3.50 1.063

S414 TS4M 14 s 3.500 2 00 1.125 2.75 .85
A414 F414 14 A 3.500 2.CD 1.125 __

Y414 14 3 3.500 3.50 1.053 2.75 1 .00
2414 14 A 3.500 3.50 1.053

S415 TS415 15 3 3.750 2.00 1.125 3.00 .85 |
A415 F41ft 15 A 3.750 2.00 1.125 ..----- __

Y41S 15 3 3.750 3.90 1 063 3.00 1 00 |
Z415 15 A 3 750 3.eo 1 063 *.—

S416 rs4 i« 16 a 4.000 2.00 1.125 3,25 .86 |
A41« F4ia 15 A 4 000 2 CO 1.125 — —

Y416 IS 3 4.000 3.50 1.313 3.25 1.03
2416 16 A 4.000 3.50 1.313 V—

S41S TS4V3 IS 3 4.500 2.00 1.125 3.75 .86
A41S F41fi IS A 4.500 2.00 1.125

Y41B IS 9 4,500 3.50 1.313 3.75 1.00
2418 18 A 4 500 3 50 1.313 * —

S420 TS420 20 a 5.300 2.00 1.125 4.25 .86
U « a ... .£420.___ .20. A- S M IL ..2.00 ..! J 2 5 . ..

FAX; 1-800 635^73
18
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Hinged One-Piece Clamp-On Shaft Collar (ordered from McMaster) 

Shaft Collars
This product matches all of your selections.

Part Number; 57145K77

Type
System of Measurement 

Material 
Steel Material 

Finish 
Bore Size 

Outside Diameter 
Width 

Screw Size 
Set/Cap Screw Material 

Specifications Met

Hinged One-Piece Clamp-On
Inch
Steel
Carbon Steel
Black-Oxide
1- 1/8"

2- 1/ 8 "

1/ 2 "

1/4"-28 
Alloy Steel 
Not Rated

S11.23 Each

1 1/ 8“

m «E3i. 57145K77Hip /Awww m t m a tto r com 
! C  2007 Me Manor- C VJ Bupjt y C omp »ny

fitkkOr-ule StCfi Hinged 
Oivif-Prtctt ClampOn Shaft Co?*-

■ u»*«« i m m  v* HMM> tatm O on* tm Orrryw
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H y d r a u l i c  O i l  F i l t e r  f o r  S - R C F  T e s t e r  L u b r i c a t i o n  S y s t e m  ( o r d e r e d  f r o m  M c M a s t e r )

Spin-On Hydraulic Oil Filtors

W to 1'A" 
Pipe Sir**

1V i Pipe Size w ith  Side-by-8ide  
F ilte r Cartridges

Changing filter cartridges is a snap—simply spin them on and off in seconds since there 
are no bolts to remove. Install these filters In return lines as well as in off-line filtration and 
lubrication systems. They have a 8una-N seal, a steel cartridge housing, and include one 
filter cartridge (two filter cartridges where noted).

All have a built-in bypass valve. When the pressure differential between the inlet and 
outlet reaches the set limit, indicating a clogged cartridge, the valve routes the oil away 
from the cartridge to  prevent pressure build-up in your line.

Connectionsi NPT female.
N ote: Filters with 1 '/a pipe size also have 2' SAE 4-bolt flange ports. Horizontal bolt hole 

center-to-oenter is 3Vto'; vertical center-to-center is 1’ VW. Bolt holes are V4-I3 UNC.
S ta n d a rd  filters are nominal-rated and use cellulose paper media for filtering.
H ig h -e ff ic ie n c y  filters use fiberglass media for more precise filtering. They are absolute- 

rated to 0044 efficiency (they'll stop 9944 of particles larger than their micron rating).
O p tio n a l F itte r Gauge—With a range of 0-60 psi, these gauges tell you when it's time 

for a new' filter cartridge. Available only for 4 4 1 S5 K aeries.
n ’T - r r i i n  For filters and replacement cartridges, please specify your required micron 

rating from those listed.
Bypass Valve

Pipe Max. Set Limit, 
Size psi psi

Max.
Temp.

Max. Flow, 
gpm

Port-to- 
Port Lg.

0 \ J
Ht.

Available
Micron
Ratings

F ilte rs
Each

R e p la c e m e n t
C a r t r id g e *

Each
S ta n d a rd

%"....... 120........... 25..................... .. 250° F ... ..15................. 6*Rf“. 3 10. 25 . 4453K11 $33 12 4453K19 $12 05
% '....... 150........... 15..................... .. 225° F ... ..15.................

...
„..3W....... .. T V * .. .. ..3. 10, 25...

..3, 10. 25...
3. 10 25

44185K65 31.61 44185K41 17.11
1 '...........120........... 25................... . 250° F .„. ..15 . 3”/t8' 7Vi*‘ 4453K12 33 33 4453K19 12 05
n v ....... 120........... 25..................... .. 250° F ... ..30........ 5>V . W n "  ■ 4453K13 5? 04 4453K29 22 59
1W ....... 150........... 15..................... . 225° F 50 A W OVfr' 3 1fi 25 44185K66 64 09 44135K42 31.98 

4453K29 22 591vi'....... 120........... 25..................... .. 250° F ... .60. . „..6vf * ioy>i' 3. 10 25 4453K14 170 32
H ig h  E ff ic ie n c y

%■....... 120........... 43..................... .. 250° F ... ..15................. ,...3n/ie .... . 5. 10 20 4358K41 66 41 4353K39 49 33
%"....... 150........... 15.............. .225° F 15 ay** 1 0  90 4418SK67 fifl  1Q 44185K43. .. 56.06

4353K39....  49.33
4358K40 fl7 27

1"........... 120........... 43.....................
1v»....... 120........... 43.....................

.. 250° F ....

.. 250° F ...
..15.................
..30....

. 3 ’Vis'.......
5 W  ..

.. 7Vu „. 
9 Vie"

. 5 . 10, 20...
5, 10 20

4358K42
4358K43

.. 75.19 
131 41

1V4'....... 150........... 15......................
1V4’....... 120........... 43.....................

..225° F ...

.. 250° F ...
..50.................
.6 0 .................

. 4VV..........

...6v4"*
.. a w . . . . .
104'u"

.10. 20.......
5 10. 20

4418SK68
4358K44

..111.75 44185K44.... 70.23 
ASfiJlKda 9 7  97

Optional Filter Gauge for 44185K.. ....... 4418SK11 Each $20.04
a Has two side-by-side filter cartridges. Overall width is

Micron rating: 3 

Part Number: 4453K1 1 

Cartridge: 4453K19
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I n s e r t  B e a r i n g s  F H S R 2 0 0  S e r i e s  S e t  S c r e w  L o c k i n g  ( P e e r  B e a r i n g s )

b  Standard load opacity 
a Narrow-inner ring with cylindrical outer ring 
■  Non-relubricatable bearing s standard (shown) 
a Nylon patcheddass 3A set screws are standard 
n  Standard seal; RSI tight tiding, 

f ill cover, metal shroud seah

Optimal seals: See page 83

1.130S.10 vt-mvt*6*1.0

0J9S3 0.7*3KdM ,<1197
SjOO

1.3B7«:7G 1/4-2*11/4 31S0

0.3543
9000

ann
m

aas
T 2*

1.867'39-80 5/16-24*5/16 MW> 1.0

1«IO

M40

0 ^ —1 ct^Lds_

•r*! 

D -

]
|

I - ......

i

d w

L

1 j
;

1

t i
- m —

Part Number: FHSR206-18 (1 1/8 shaft diameter)
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